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Abstract. This paper combines reflexive-graph-category structure for
relational parametricity with fibrational models of impredicative poly-
morphism. To achieve this, we modify the definition of fibrational model
of impredicative polymorphism by adding one further ingredient to the
structure: comprehension in the sense of Lawvere. Our main result is that
such comprehensive models, once further endowed with reflexive-graph-
category structure, enjoy the expected consequences of parametricity. This
is proved using a type-theoretic presentation of the category-theoretic
structure, within which the desired consequences of parametricity are
derived. The formalisation requires new techniques because equality re-
lations are not available, and standard arguments that exploit equality
need to be reworked.

1 Introduction

According to Strachey [26], a polymorphic program is parametric if it applies the
same uniform algorithm at all instantiations of its type parameters. Reynolds [23]
proposed relational parametricity as a mathematical model of parametric poly-
morphism. Relational parametricity is a powerful mathematical tool with many
useful consequences; see [27J21T3] for numerous examples.

The polymorphic lambda-calculus, A2, (a.k.a. System F) was introduced
independently by Girard [11] and Reynolds [22]. Tt serves as a model type theory
for (impredicative) polymorphism, and thus provides a significant testing ground
for ideas on relational parametricity. In this paper we address the question:

What is the fundamental category-theoretic structure needed to model
relational parametricity for A2, which is both i) minimal, in assuming as
little structure as possible; but ii) strong enough to ensure the expected
consequences of parametricity hold?

It is perhaps surprising that this question does not yet have an established answer.
On the one hand, category-theoretic models for A2 were developed many years
ago by Seely [25]. They are studied systematically as A2 fibrations in Jacobs [15].
On the other, the fundamental category-theoretic structure needed to model
relational parametricity is also known. The crucial ingredient is the notion of
reflexive graph category which appeared implicitly in Ma and Reynolds [19], was



used explicitly by O’Hearn and Tennent [20], and Robinson and Rosolini [24],
and reached maturity in the parametricity graphs of Dunphy and Reddy [71g].

To obtain minimal structure for relational parametricity for A2, it is natural
to combine the structure of A2 fibrations with that of parametricity graphs. This
results in the notion of A2 parametricity graph, which we define in Section [3]
Sadly, A2 parametricity graphs enjoy the expected properties of parametricity
only in the special case that the underlying category is well-pointed. (Similar
observations, for different but related notions of model, are made in [6/7J8].) Since
well-pointedness rules out many categories of interest in semantics (e.g., functor
categories) this limits the generality of the theory.

One way of circumventing the restriction to well-pointed categories was
proposed by Birkedal and Mggelberg [6], who developed a more elaborate category-
theoretic structure, which overcomes the limitation by modelling Plotkin and
Abadi’s logic for parametricity [2I]. This method of modelling the combination of
A2 with an extraneous logic has been been refined and simplified by Hermida [12].
Nonetheless, it does not enjoy the simplicity in conception of combining the
structure of category-theoretic models of A2 with that of parametricity graphs.

To obtain our minimal structure, we retain the original idea of combining
parametricity graphs with category-theoretic models of A\2. However, we imple-
ment this in a perhaps unexpected way. We modify the notion of A2 model. We
ask for A2 fibrations to additionally satisfy Lawvere’s comprehension property.
Not only are the resulting comprehensive A2 fibrations natural in their own right
as models of A2, but, when combined with parametricity-graph structure to
form comprehensive A2 parametricity graphs, they do indeed enjoy all expected
consequences of parametricity.

Sections [2| and [3]| define comprehensive A2 fibrations and comprehensive \2
parametricity graphs respectively. In Section [4] we present a type theory A2R,
corresponding to our category-theoretic structure, which provides a simple system
for reasoning about parametricity. The type theory A2R is similar to Dunphy’s
System P [7], and Abadi, Cardelli and Curien’s System R [I], to which it is
compared in Section [7}

In Section [5} we develop the technical machinery needed to reason in A2R. A
key obstacle is that the system does not include equality relations. This means that
graph relations, which are a crucial ingredient in standard arguments involving
relational parametricity, are not in general definable. In Section [5] we instead
identify two forms of pseudograph relations, whose subtle interrelationship allows
us to establish the consequences we need. One kind of pseudograph relation
is immediately definable using the fibrational structure built into the notion
of parametricity graph. The other type of pseudograph requires opfibrational
structure. We use an impredicative encoding to show that opfibrational structure
is definable in A2R,, and hence always present in comprehensive A2 parametricity
graphs. In Section [6] we finally apply the technical machinery and establish that
the expected consequences of relational parametricity are indeed derivable in
A2R, and hence hold in comprehensive A2 parametricity graphs.

In summary, the main contributions of this work are:



(i) The definition of comprehensive A2 fibrations as models of A\2.

(ii) The definition of a new category-theoretic notion of model of relational para-
metricity, obtained by combining parametricity graphs and comprehensive
A2 fibrations into comprehensive A2 parametricity graphs.

(iii) The extraction of A2R as the type theory intrinsic to comprehensive A2
parametricity graphs.

(iv) The derivation of the expected consequences of parametricity in A2R,, and
hence in comprehensive A2 parametricity graphs. This requires novel tech-
niques: establishing the opfibration property of comprehensive A2 parametric-
ity graphs, and the use of pseudograph relations.

In the category-theoretic parts of the paper, we assume familiarity with fibred
category theory, for which Jacobs [I5] is our main reference. Nevertheless, a
substantial portion of the paper is presented in purely type-theoretic terms, and
may be read without reference to the accompanying category-theoretic material.

2 Comprehensive A2 Fibrations

In Fig. [} we recall the polymorphic A-calculus A\2. We use z,y, ... to range over
term variables, and «, 3, ... to range over type variables. Our presentation has

four judgements: , stating that I" is a well-formed context; ,
stating that A is a well-formed type in context I; , stating that the
term ¢ has type A in context I'; and judgemental equality . We
assume [ and n-equalities for both term abstraction, A, and type abstraction,
A. Equality is also assumed to be a congruence relation, although the rules
guaranteeing this have been omitted from Fig. [T| for brevity.

A minor departure from many presentations of A2 is that we interleave type
variables and term variables in a single context. This approach is not only natural,
but indeed standard when A2 is considered in the context of dependent type
theory; for example, when derived as an instance of a pure type system [3].
Since there is no dependency of A2 types on term variables, such interleaving
is syntactically vacuous. Nevertheless, we shall see below that its presence does
have semantic implications.

We next recall the standard category-theoretic notion of A2 fibration, which
models A2. We directly restrict the definition to the split case to circumvent
coherence issues that would otherwise arise, cf. [I5].

Definition 1 (A2 fibration). A A2 fibration is a split fibration p : T — C,
where the base category C has finite products, and the fibration:

(i) is fibred cartesian closed;
(ii) has a split generic object U [15], Def. 5.2.1] — we write §2 for pU;
(iii) and has fibred-products along projections X x 2 — X in C.

Moreover, the reindexing functors given by the splitting are required to preserve
the above-specified structure in fibres on the nose.



Context formation rules:

T ctxt I ctxt '+ A type
JE— - r r
- ctxt I, « ctxt (a ¢ I) I, z: A ctxt (@¢ )
Type formation rules:
(@en) '+ A type I'+ B type I, at A type
I'+ « type @ I'+A— B type I' - Va. A type

Term typing rules:

INz:AF{:B I'Fs:A—B T'Ft:A

Tra.a @Al T A5 B TFsi:B
IakFt: A I'Ft:Va. A I' - B type
I'Aa.t:Va. A I'+t[B]: Ala — B]
Judgemental equality:
T'F Oz tu=tz—u:B Tri—hwi Ao @D
r
I'F (Aa. t)[U] = tla — U] : Al — U] Iri= Aot vaa @D

Fig. 1: The type system A2

The above definition differs slightly from [I5, Def. 8.4.3(b)] in that we do not
include fibred coproducts in condition L These are not needed to model A2,
and their existence is anyway derivable in parametric models.

In a A2 fibration, we write Tx for the fibre category over X. We also use X
as a subscript when referring to structure in T x; e.g., 1x is the specified terminal
object in Tx, and = x is the exponential structure in Tx. Given f: X — Y
in C, we write f* for the reindexing functor Ty — Tx, and A*f: f*A — A
for the specified cartesian lifting of f relative to A. We also write [], for the
specified right adjoint, given by to reindexing functors 77 : Tx — Txx .

We recall in outline the semantic interpretation of A2 in a A2 fibration T — C.
A context © = ag, ..., «a, of type variables is interpreted as the n-fold product
[©] = 2™ in C. A type A in type-variable context © is then interpreted as an
object [A]e of T over [O], defined by induction on the structure of A, using
cartesian closure for function types, fibred products for universal types, and the
reindexing (m;)* U of the generic object along the projection 7;: 2" —— (2
to interpret «; over [@]. Finally, the interpretation of a term I' - ¢t : A is
obtained by splitting I" into its component contexts: © of type variables, and A
of term variables. Then A = x1:A1,...,Zm: Ay, is interpreted as the product
[Ale = [Ai]e % -+ x [Am]e in the fibre over [O], and ¢ is interpreted as a
morphism [t]r: [A]le — [A]e in Tpey.




In the above outline, one sees that the structure of a A2 fibration fits uneasily
alongside our mixed contexts of interleaved type and term variables, since these
have to be separated to define the semantic interpretation. In dependent type
theory, where no such separation is possible, a more direct semantic interpretation
is achieved using Lawvere’s comprehension property [I8] to model the process of
context extension [I4]. It is natural to apply the same idea to A2.

Definition 2 (Comprehensive A2 fibration). A A2 fibration p : T — C
is comprehensive if it enjoys the comprehension property [I5, Def. 10.4.7]: the
terminal-object functor X +— 1x : C — T has a specified right adjoint K : T — C.

Requiring a specified right adjoint maintains consistency with our policy of
working with split fibrational structure. Given A in Tx, we write k4 : KA — X
for the ‘projection’ map obtained by applying p to the counit 1 x4 — A in T.

To show that comprehensive A2 fibrations permit a direct, inductive-on-syntax
semantic interpretation, we present the interpretation of A2 types in detail. A
context I' ctxt is interpreted as an object [I'] of C; and a type I' - A type is
interpreted as an object [A]r in Tpry. These are defined by mutual induction,
together with maps n¢: [I'] —— {2 for every context I" containing «.

[1=1 [elr = (=p)"U T o = T2
[I,o] =[] x 2 [A— B]r=[Alr = [Blr TR g = T oM (B#£a)
o A= KlAlr  WaAl=][ Mlne 70 = o,

Having made the above definitions, a term ' - ¢ : A is interpreted as a global
element [t]r: 1ypyp — [A]r in Tppp. The definition, which we omit, is a
straightforward induction on the derivation of I' ¢ : A.

The appropriateness of comprehensive A2 fibrations as a notion of model for
A2 is supported by soundness and completeness results.

Theorem 3 (Soundness for \2). If '+ t; =ty : A then, in every comprehen-
sive A2 fibration, we have [t1]r = [t2]r-

Theorem 4 (Full completeness for A\2). There exists a comprehensive A2
fibration satisfying:

(i) for every type I' = A type, every global point 1py — [A] r is the denotation
[tlr of some term 't : A; and
(ii) for all terms I' & t1,to : A satisfying [t1]r = [t2]r, we have I'bt1 =t : A.

Theorem [3]is proved by a routine induction on equality derivations, and Theorem[4]
by construction of a syntactic model, which has the requisite properties.

3 Comprehensive A2 Parametricity Graphs

Reflexive graph categories are studied in [T924UT6ITI8] as a simple category-
theoretic structure for modelling relational parametricity. A reflexive graph



category consists of a pair of categories, V, the vertex category, and E, the
edge category, together with functors Vi,Va: E — V and A: V — E satisfying
V1A =idy = Vo A. Informally, one thinks of E as a category whose objects are
binary ‘relations’ between objects of V. Then Vi, Vs are ‘projection’ functors,
and A maps an object to its ‘identity relation’.

We shall be guided by the following general thesis. A model of relational
parametricity, irrespective of the type theory for which it is considered, should form
a reflexive graph category, in the (2-)category of structure-preserving functors
between models of the type theory in question. This thesis is supported by the
following considerations. Endowing the edge category E with the categorical
structure needed to interpret types corresponds to giving types a relational
interpretation. The preservation of this structure by the projection functors Vi, Vo
means that the relational interpretation commutes with the usual non-relational
interpretation of types. The preservation of structure by A, in combination with
the identity property discussed later, corresponds to Reynolds’ identity extension
property [23].

In the context of the present paper, we need to specialise the above recipe to
(comprehensive) A2 fibrations. A morphism from one (comprehensive) A2 fibration
p': TV — C' to another p: T — C is given by a pair of functors, H: T’ — T and
L: C' — C such that p H = Lp’, and such that H, L preserve all other specified
structure (including the choice of cartesian morphisms in the splitting) on the
nose. By a reflexive graph of (comprehensive) A2 fibrations, we thus mean a pair
of (comprehensive) A2 fibrations with functors between them:

Vi, AT, V3
R(T) = ST
1
" , )
R(C) = - C
v§, A€ VE

where each of the three pairs V], V{ and V3, VS and AT, A® is a morphism
of (comprehensive) A2 fibrations, and where each of the triples VT, V3, AT and
V§, VS, AC is a reflexive graph category. We emphasise that p™: R(T) — R(C),
in , is an arbitrary (comprehensive) A2 fibration fitting into the diagram. The
notation R(-) is merely mnemonic, and does not imply that R(T) is obtained
using a particular construction from T.

One needs to add further conditions to the above structure to ensure that the
objects of R(T) behave sufficiently like relations. In [I9], this was addressed by
requiring the fibre category R(T)1,.,, over the terminal object, to coincide with
a particular category of logical relations over T1.. As well as only being applicable
if Ty, has (sufficient) finite limits, this requirement also has the weakness that
it says nothing about other fibres of p™. As a result, the structure is too weak
to imply consequences of parametricity in general, see [246] for discussion. To



remedy this, we instead need axiomatic structure for a category of relations, in
a form that is suitable for being imposed fibrewise on p™. This is provided by
Dunphy and Reddy’s notion of parametricity graph [7I8], which we now recall.

A reflexive graph category V1,Va: E—V, A: V — E is said to be relational
if the functor (V1,Va): E — V x V is faithful. This property allows one to think
of morphisms in E as pairs of relation-preserving maps from V. Accordingly,
we call objects of E relations, we write R: A <> B to mean an object R of
E with ViR = A and VoR = B, and we write f X g: R —— S to mean
that there is a (necessarily unique) map h: R —— S in E with Vih = f and
Vaoh = g. A reflexive graph category satisfies the identity property if, for every
h: AA —— AB in E, it holds that V1h = Vyh. This allows one to think of AA
as an identity relation on A (although, cf. Sect. [5| for caveats). In a relational
reflexive graph category, the identity property is equivalent to the fullness of the
functor A. A parametricity graph is a relational reflexive graph category with the
identity property, for which the functor (V,Vs3): E — V x V is a fibration. The
fibration property supports the following definition mechanism. Let R : A <> B
be a relation in E. Then, given morphisms f: A’ — A and g: B — B in V,
reindexing produces an inverse image relation [fxg] '*R: A’ < B'E|

The main category-theoretic definition of this paper is a fibrewise adaptation
of parametricity graph to the context of comprehensive A2 fibrations.

Definition 5 ((Comprehensive) A2 parametricity graph). A (comprehen-
sive) A2 parametricity graph is a reflexive graph of (comprehensive) A2 fibrations,
as in (I, that satisfies, for all objects W of R(C) and X of C:

(Relational) The functor (V],V3) Ir(m)y : R(T)w — Toew x Tygw is faithful.
(Identity property) The functor AT [r, : Tx — R(T)scx is full.
(Fibration) (V1,V3) gy : R(T)w — Tyew x Tygw is a cloven fibration.

Moreover, for every ¢ : W —— W in R(C), we require the commuting square

(™)

R(T)w > R(T)w

(VI VD) IR(T)w (VI V) IR(T) s

Toew xToew > Toow X Togw

p(Vi¢) x p*(V§9)

(where the notation distinguishes reindexing functors determined by p and p*) to
give a cleavage-preserving fibred functor from (V],V3) ['R(T)w tO (VI, V) [R(T) s -

This definition could by strengthened by asking for the parametricity-graph
fibrations to be split instead of merely cloven. Such a strengthening does not

3 We use (-)7' rather than (-)* for reindexing to emphasise that we are in a relational
setting: (V1,V2) is a preorder fibration since it is faithful.



affect any of the results in the sequel, and may seem natural given our use of
split fibrations in all previous definitions. Nevertheless, our choice of definition
reflects the fact that the weaker cloven assumption is all that is needed to avoid
coherence issues arising in the semantic interpretation of the type theory A2R
introduced in Sect. [ below.

It is Def. [5] with the comprehension property included, that provides our
answer to the question highlighted in the introduction. (The definition without
comprehension is included for comparison purposes only.)

4 A Type System for Relational Reasoning

We define a type system A2R, suggested by the structure of comprehensive A2
parametricity graphs. This system is similar, in many respects, to System R of
Abadi, Cardelli and Curien [I] and System P of Dunphy [7], to which we shall
compare it in Sect. [7}

The rules for A2R are given by Fig. [1| (it extends A2) in combination with

Fig. |2l The latter adds three new judgements: says that © is a well-

defined relational context;| © - A1 RAs rel |says that R is a relation between types

Ay and As, in relational context ©; and ’ O (t1:A1)R(te: As) ‘ is a relatedness
judgement, asserting that t;:A; is related to to: Ay by the relation R.

Relations, in Fig. [2| are built up from a collection of relation variables p, ...,
which, for clarity, we choose to keep disjoint from type and term variables. In
the rules, we make use of three operations (-)1, (-)2 and (-), defined in Fig.
which implement reflexive graph structure on syntax. The (-); operations project
a relational context to a typing context, whereas the (-) operation acts in the
other direction. In the definition of the latter, we associate a distinct relation
variable p® to every type variable a. Lemma [7] below states how these operations
relate typing and relational judgements.

The rules for building relational contexts and relations, in Fig. 2] require
some explanation. In adding an assertion apf to a relational context O, all
variables «, 3, p need to be sufficiently fresh. However, the formulation of A2R
is such that variables on the left-hand side of relations are always manipulated
separately from variables on the right. Thus, for example, « is sufficiently fresh
in apB, as long as « does not already occur on the left side (©); of ©@. A similar
separation principle applies also with respect to the term variables x1,xs in
assertions (z1:A41)R(x2:Az2). The separation principle means that one needs to
be cautious in interpreting assertions of the form apa and (z: A)R(x: A). In
such assertions, even though the same variable appears on the left and right, the
correct intuition is that these are really two distinct variables. We have chosen
not to underline this distinction by requiring the variables to be syntactically
different, since doing so would add unnecessary syntactic clutter to the system:;
for example, it would complicate the definition of the (-) operation. Instead, we
rely on left and right positioning to make the necessary distinctions. This is
crucial in the definition of the substitution operations on relations. There are




Relational context formation rules:

O rctxt
Trcx O cph rcbt PEO2 261,526

O rctxt OF A1RA rel
9, (Il : Al)R(.’EQ : AQ) rctxt

Relation formation rules:

(z1 ¢ O1,22 ¢ O2)

9 [ AlRAQ rel @ = B1SBQ rel
O+ (Al — B1)(R — S)(AQ — BQ) rel

O F app rel (apfh € 0)

O, apBF A1RA; rel
O+ (Va. Ar)(Vapp. R)(VB. As2) rel

Ql—BlRBgrd @1|—t11A1—>B1 (”)2}—252:142%32
O Ai([t1 x t2] ' R)As rel

Relatedness rules:

OF (1 : A1)R(z2 : A3) ((z1 : A1)R(z2 : A2) € O)

@7 (1‘1 : Al)R(IQ : Ag) [ (tl : B1)S(t2 : Bg)
[CA ()\l‘l.h 1A — B1)(R — S)()\.Tg.tz : A2 — BQ)

Ok (51 : A1 — B1)(R — S)(82 : Ag — B2) e F (t1 : Al)R(tQ : AQ)
Or (81 t1: Bl)S(SQ to: Bg)

@, Oépﬁ = (tl : A1)R(t2 . AQ)
O F (Aa.ty : Vo Ar) (YapB. R) (AB. t2 : V5. Az)

O+ (t1 : Ya. Ar) (VYapB. R) (t2 : VB. Az) O+ B1SB; rel
eF (tl[Bl] : Al[a — B1DR[O&pB — BlSBQ](tQ[BQ] : Ag[ﬂ — Bz])

Ot (t1ur : B1)R(t2us : Ba) OF (u1: A1)([t1 x t2] "' R)(ua : A2)

OF (u1: A ([t X t2] ' R)(ua : A2) OF (t1ur : B1)R(taus : Ba)

9"(t11A1)R(t2:A2) QlFtlzsllAl Qzl_tQZSQZAQ
@ [ (51 : Al)R(SQ : Az)

Parametricity rule:

(I F (s: A)(A)(t: A)
I'Fs=t:A

Fig. 2: The type system A2R




The operations (—); (for ¢ € {0,1}) on relational contexts:

()i
(9, Cllpaz)i = (@)7,, (67

(@, ({El ZA1)R(.’E2:A2))1' = (@)17 X; Az
The operation (—) on contexts and types:
()= (o) = 5
(I', o) =(T), o pcx (A= B) =((4) = (B))
(I, z: A) = (I, (x: A)(A)(z: A) (Va. Ay = Va g*a. (A)

Fig. 3: Syntactic reflexive graph structure

two such operations: R[apf — ASB] substitutes, in the relation R, the type A
for all left occurrences of «, the type B for all right occurrences of 8 (which may
itself be ), and the relation S for all occurrences of p; similarly, S[z — s,y — ]
substitutes, in the relation S, the term s for all left occurrences of x, and the
term ¢ for all right occurrences of y (which may itself be x). Note that relations
can indeed contain terms and (hence) type variables, due to the [t; x t2] 'R
construction, where we consider ¢; as occurring on the left, and t5 on the right.

Lemma 6 (Substitution lemma).

(i) If ©F A1 RAs rel and O, arpag b (t1 : B1)S(ta : Bs) then
Cln (tl [0[1 ’—)Al] IBl [0[1 ’—)Al])S[OélpOéQ '—)AlRAQ](tQ [ag |—>A2] ZBQ[QQ '—)AQ])
(Z’L) If@ - (tl : Al)R(tQ : AQ) and 9, (:Cl : Al)R(fﬂQ : AQ) H (51 : Bl)S(SQ : BQ)
then © F (s1[xz1 — t] : By)S[z1 = t1, 29 > to(s2[ze — 2] : Ba).

The relatedness rules of Fig. [2 include the expected rules for relations R — S
and Vapf. R, which mimic the analogous type constructions in A2. The rules for
[t1 X t2] "1 R implement its intended interpretation as an inverse image construction.
In addition, a further rule expresses an extensionality principle for relations with
respect to judgemental equality. Such an intermixing of relatedness judgements
with equality judgements is legitimised by statement of the lemma below.

Lemma 7.

(Z) If@ - (tl : Al)R(tQ : AQ) then (@)1 = ti : Ai-
(i) If Tt Athen (I') F (t: A)(A)(t : A).

Statement of the lemma asserts that all terms enjoy the characteristic
relation-preservation property of relational parametricity. By the extensionality
rule, it follows that I' - s = ¢ : A implies (I} F (s : A)(A)(t : A). That is,
equal terms are parametrically related. Since parametric relatedness captures a
form of behavioural equivalence, we can ask also for the converse implication to
hold. This is implemented by the parametricity rule in Fig. 2] This rule, in the




general form given, is derivable from its empty-context version: - (s : A)(A)(t : A)
implies - s =t : A. Thus the parametricity rule is equivalent to asking for the
relational interpretation of a closed type to act as an identity relation between
closed terms—a weak version of Reynold’s identity extension property [23]. We
discuss the relational interpretation of open types in Sect.

We outline the semantic interpretation of A2R. Given a comprehensive A2
parametricity graph, the contexts, types and terms of A2 are interpreted in
the comprehensive A2 fibration p : T — C, as in Sect. In addition, we
interpret a relational context © as an object [@] of R(C), and a syntactic relation
O - ARB rel as a semantic relation [R]e: [A] (o), <+ [B](o), in R(T)[e;. The
definitions of [O] and [R]e interpret context extension, function space and
universal quantification using the structure of the comprehensive A2 fibration
p® : R(T) — R(C), where relation variables apf are interpreted using the
generic object of p™. For the inverse-image relation © - A ([t; x ta] "' R)Aj rel,
we have that [t1](e), and [t2](e), determine maps [A:](e), — [Bi]e), and
[[A2]](@)2 — [[BQ]](@)Z in TH(@)IH and Tﬂ(@)gﬂ respectively. The fibration property
of (VT,V3) [R(T)je; then gives [[t1 xta] ' R] : [A1](e), < [A2](e), as the inverse
image of [R] : [[Blﬂ(@)l <+ [B2](e), along these maps.

In the above semantic interpretation, the comprehension property is needed in
order to interpret a relational context © as an object [@] of R(C), and essential
use is made of this in the definition of [[t; x t3] "' R]. Were the comprehension
property of models dropped, it would be possible to rejig the semantics to
interpret a restricted calculus with inverse-image relations definable only in
relational contexts containing no term variables, but not full A2R.

The semantics is supported by soundness and completeness theorems.

Theorem 8 (Soundness for \2R). In every comprehensive A2 parametricity
graph:

(Z) ZfF = tl = t2 : A then [[tl]]p = [tg]]p,‘ and
(ii) if O+ (t1:A1)R(t2: Ag) then [[tlﬂ(@)l X [[tg]](@)zl 1[[@]] — [[Rﬂ@.

Theorem 9 (Full completeness for \2R). There exists a comprehensive \2
parametricity graph satisfying the following.

(i) For every type I' = A type, every global point 1jpy — [A]r is the denota-
tion [t)r of some term I'F ¢ : A.
(i) For all terms I' & tq,ta : A satisfying [t1]r = [t2]r, we have I' F ¢ = t9 : A.
(iii) For every relation © = A1 RA; type, every global point 1jo) — [R]e arises
as [t1](e), x [t2l(e), for terms ti,ts such that © &= (t1: A1) R(t2: Ag).

Theorem [§]is proved by induction on derivations. We highlight that the soundness
of the parametricity rule follows from the identity property of comprehensive A2
parametricity graphs. Theorem [J] is proved by a term model construction.

5 Direct-image and Pseudograph Relations

As already discussed, the parametricity rule of Fig. [2] interprets the relation (A)
as an identity relation when A is a closed type. When A contains type variables,



however, this interpretation is not available. Consider an open type a - A(«a) type
(where we write A(«) to highlight the occurrences of « in A). Then we have
apa b A(a)((4)(p)) A(a) rel. However, the independent handling of left and right
variables in A2R (forced by the semantic correspondence with comprehensive
A2 parametricity graphs), means that the latter relation is equivalent to apf +
A(a)((A)(p))A(B) rel; i.e., it is a family (indexed by relations p) of relations
between different types. Indeed, the distinctness of left and right type variables
means A2R has no facility for formulating relations between open types and
themselves. In particular, A2R contains no mechanism for defining identity
relations on open types. Nonetheless, the relation (A) can act as a kind of pseudo-
identity relation for type A where the parametricity rule can establish equalities
from (A)-relatedness in relational contexts of the form (I').

Graphs of functions are ubiquitous in standard arguments involving relational
parametricity. Since we have only pseudo-identity relations, we correspondingly
have only pseudographs available in A2R.. Suppose I' + f : A — B. Define:

gr(f) = [f x idp]"(B)

Clearly (I') = Agr.(f) B rel. Its defining property is that (z: A) gr.(f) (v : B)
holds if and only if (fz:B)(B)(y: B). Mathematically, there is, however, another
natural pseudograph relation, for f, between A and B. This is the relation gri(f)
defined by (z:A)gr(f)(y: B) if there exists w: A such that (x:A)(A)(w:A) and
y = fw. Since, by of Lemma [7, f maps (A)-related values to (B)-related
values, gri(f) C gr.(f). However, because (A) and (B) are not identity relations,
there is no need for this inclusion to be an equality. We shall need to make use
of both forms of pseudograph relation to derive the standard consequences of
parametricity. In order to do so, we must first provide a definition of gr(f) in
A2R itself, and establish formal analogues of the informal observations above.
The main construction we need is that of direct-image relations [t1 X ta]| R,
dual to inverse-image relations. This is achieved using an impredicative encoding.

Theorem 10 (Direct-image relations). Using the definition
[ty X t2)iR = [ip, X ip,] ™" (Yapa. ([(— o tr) x (= o t2)] (R = p)) = p)

where i abbreviates A\b. Ac. At.tb: B — Va. (B—a)—a and (—ot;) abbreviates
Aw;:Bj = a). Az Aj).vj(t1 xj), A2R supports the derived rules below.
@1 Ft ZAl — By
Chs AlRAQ rel @2 F to ZAQ — 32 CAs (ul :Al)R<u2:A2)
ek Bl([tl X tg]gR)BQ rel A= (t1u1 ZBl)([tl X tg]!R) (tQUQZBQ)

@"ClQCQ rel @1"1}1231—)01 @2"@2232—)02
o+ (U1 :Bl)([tl X tQ}!R) (UQ:BQ) O+ (’Ul oty A1—>01)(R—)Q) (’1)2 oty: Ay —Cy

Or (’Ul uy: Cl)Q(Ug ug . 02)

In fact, these rules are derivable without use of the parametricity rule of A2R.



It is now straightforward to define the second form of pseudograph relation
discussed above. Suppose that I' - f: A — B and define (I') = A gri(f) B rel by:

gri(f) = [ida x fli(A) .

To understand the relationship between the two pseudograph relations we
introduce some notation. Given R and S such that © - ARB rel and © - ASB rel,
let ©F R C S abbreviate O, (x: A)R(y : B)F (z: A)S(y : B).

Lemma 11. IfI'+ f: A— B then:

(1) (I') & gri(f) € gre(f); and
(i) (D) (s:A) gro(f) (¢:B) iff v fs = t: Biff (I b (s:A) gri(f) (t: B).

We comment that, in spite of item the converse inclusion to|(i)| does not hold
in general. Property applies only in context (I'), and thus implies nothing
about what happens if further relational assumptions are added.

Theorem [I0] has a semantic analogue: direct image relations correspond to
opfibrational structure on comprehensive A2 parametricity graphs.

Theorem 12. In any comprehensive A2 parametricity graph, for every object W
of R(C), the functor (V{,V3) Ir(m)y : R(T)w — ToewXTygw is an opfibration.

6 Consequences of Parametricity

System A2R is strong enough to prove the familiar consequences of parametricity.
Theorem 13 (Consequences of Parametricity). System A2R. proves:

(i) The unit (terminal) type can be encoded as 1 =Voa.a — a.
(i) The product of A and B can be encoded as Ax B =Va.(A — B — a) — a.
(iii) The empty (initial) type can be encoded as 0 = Va. .
(iv) The sum of A and B can be encoded as A+B =Va.(A—a)—=(B—=a)—a.
(v) Ezxistential types can be encoded as Ja. T'(a) = Va. (VB. (T'(8) = a)) — a.
(vi) The type Va. (T(a) = ) — « is the carrier of the initial T-algebra for all
functorial type expressions T(a).
(vii) The type Ja. (o — T()) X « is the carrier of the final T-coalgebra for all
functorial type expressions T(a).

This result for A2R implies that analogous category-theoretic properties (which
we do not state for lack of space) hold for comprehensive A2 parametricity graphs.
The proofs of [(i)H(vii)| follow the usual ones, see, e.g., [2I], but with graph
relations replaced by pseudographs. Pseudograph relations of the form gr.(f)
suffice in all proofs with the exception of the verification of final coalgebras, where
gr1(f) is used. In this section, we explain how this difference in the treatment of
initial algebras and final coalgebras arises. For lack of space, we focus on the use
of pseudograph relations only, and omit the (standard) supporting arguments.



Suppose I', a F T type. We write T(«) to highlight the occurrences of « in
T, and T(A) for the substitution T[a — A]. If a occurs only positively in T
(i.e., not on the left-hand side of an odd number of arrows) then it is standard
that T' defines an endofunctor on types. If I'" + f : A — B, where I extends I,
then we use the notation I'" - T'(f) : T(A) — T'(B) for the functorial action of
T. This action preserves identities and composition up to judgemental equality.
In addition, the corresponding relational substitution preserves pseudo-identity
relations; i.e., (T)((A4)) (by which we mean the substitution (T)[ap®a +— (A)])
syntactically coincides with (T(A)). Also, the functorial action lifts to relations:
ifOF (f:A— B)(R— S)(f': A’ = B’), where O extends (I'), then:

O (T(f):T(A) = T(B))(TYR) = (TYN)(T(f'):T(A") - T(B)) .

Using these facts (which assert that T is a reflexive-graph functor [§]) one
establishes the following properties of the action of (T') on pseudograph relations.

Lemma 14. Suppose a occurs positively in I, a =T type and I''+ f: A — B,
where I’ extends I'.

(1) (") = (T)(gr«(f)) € gr«(T(f)) -

(i) (I'") = gri(T(f)) € (T)(gri(f)) -

Our proof of this lemma closely mirrors the proof of the Graph Lemma in [9],
which exploits the fact that graph relations can be defined either using inverse
image, analogously to gr.(f), or using direct image, analogously to gri(f).

We now explain how Lemma [14] bears on the proofs of the universal properties
of initial algebras and final coalgebras. Given T' as above, standard constructions
produce a T-algebra and a T-coalgebra that can be shown to be weakly initial
and weakly final respectively, without invoking parametricity. The parametricity
rule is used to establish the uniqueness part of the universal property. In the
initiality and finality arguments, one is led to consider T-algebra and T-coalgebra
homomorphisms respectively:

T(A) &» T(B) T(A) () T(B)
al lb a/I Ib’
A ; B A 7 B

where the diagrams are given by terms, in a context I extending I', which
commute up to judgemental equality. Lemma [14] allows one to prove the following
crucial properties as consequences of the commutativity of the above diagrams.

(I' F (a: T(A) = A) (<T>(gr*(h)) — gr*(h)) (b: T(B) — B)
(I' F (a': A— T(A)) (gr!(h') — (T)(gr;(h’))) (b': B— T(B))
It is the orientation of the function relations above that necessitates the use of

a different type of pseudograph relation in each case. Modulo this subtlety, the
remaining proofs of initiality and finality proceed as usual, cf. [21].



7 Related and Further Work

System R of [I] and System P of [7] share with A2R the property of having a
syntax in which function space and universal quantification are basic constructions
on relations. Indeed A2R is especially similar to System P, which also has the
inverse-image-relation constructor [t; x t3] "' R. The most significant difference
is that, in System P, the formation rule for this construction is restricted: the
terms t1,to are not allowed to contain free term variables. However, they are
permitted to contain so-called indeterminates, which, in the semantics of System
P, range over global elements in models. This device allows System P to be used
to establish consequences of parametricity in well-pointed models [7]. In A\2R,
our general arguments for consequences of parametricity make essential use of
the possibility for ¢; and s to contain free term variables. As already observed
in Sect. [4} the comprehension property of our models is crucial to the semantic
interpretation of inverse-image relations in such cases.

System R of [I] departs from A2R (and System P) in two main ways. The
first is that, in System R, every type A has an associated identity relation
A*E| A key rule of System R (written in our notation) is that © F z A*x,
whenever x : A appears anywhere in relational context @. This rule breaks
the independence between left and right variables in the relational judgements
of A2R.. (For example, property of Lemma [7| fails.) The second difference
is that System R has an explicit syntax for defining graph relations, rather
than the inverse-image construct of A2R (and System P), which would be more
general in that context. Due to the presence of both identity and graph relations,
the arguments, in System R, for consequences of parametricity proceed along
standard lines [I]. However, System R currently lacks a corresponding semantic
story of the kind we have used in this paper in justification of A2R.

In fact, the interplay between models and syntax could be pushed much further
than in the present paper. By adding primitive product types to A2 and A2R, one
can strengthen our full completeness results by obtaining syntactic categories that
are initial in an appropriate 2-category of strict structure-preserving morphisms of
models. It would be more natural, however, to broaden both the notion of model,
by replacing splittings of fibrations with cleavages, and the notion of morphism,
by permitting non-strict structure preservation. With such a relaxation, coherence
issues arise, but one would expect to obtain (pseudo-)initiality of the syntactic
model of A2R (without any need to extend the syntax with products).

For lack of space we have not presented any concrete models in this paper. In
fact, any instance of the more elaborate axiomatic structure from [6] can be re-
construed (albeit in a nontrivial way) as a comprehensive A2 parametricity graph.
So our minimal structure at least generalises the known models of parametricity.
However, we do not know whether our structure encompasses any genuinely
new models of relational parametricity that truly exploit the (potential) added
generality of our approach.

4 In System P, every type A is itself a relation, which, although called an “identity
relation” in [7], has the properties of the relation (A) in the present paper.



The results of the present paper should be contrasted with those of other recent
work by first two authors and colleagues [9I10]. In this paper, we have axiomatised
category-theoretic structure modelling relational parametricity for the specific
type theory A2, where the resulting structure encompasses both ‘syntactic’ and
‘semantic’ models. In contrast, [II0] axiomatise the category-theoretic structure
required on a ‘semantic’ model for Reynolds’ original set-theoretic definition
of relational parametricity [23] to generalise to the model. Interestingly, the
category-theoretic notion of bifibration occurs both as a central ingredient in the
axiomatisation of [9JI0], and, in the guise of direct-image relations, as a vital
tool in the present paper. A novelty in the present paper is that the bifibrational
structure is derived rather than assumed.

From a type-theoretic perspective, one advantage of the approach followed in
this paper is that the passage from the original type theory (A2) to the relational
version (A2R)) appears not to depend on specific properties of the former, other
than that essential use is made of judgemental equality in the formulation of the
parametricity rule. We believe that this potential flexibility may be useful for
transferring our methods to dependent type theories, where parametricity is an
active area of study [2/4U5I17].

The proof-relevant setting of dependent type theory, however, requires mod-
ifications to our semantic framework. In particular the relational property of
parametricity graphs must be relaxed. Ongoing work on a higher-dimensional,
proof-relevant form of parametricity may show how to remove this requirement.
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