
A finite axiomatisation of inductive-inductive
definitions

Fredrik Nordvall Forsberg and Anton Setzer ∗

Induction-induction is a principle for mutually defining data types A ∶ Set and
B ∶ A→ Set. Both A and B are defined inductively, and the constructors for
A can refer to B and vice versa. In addition, the constructor for B can refer
to the constructor for A. Induction-induction occurs in a natural way when
formalising dependent type theory in type theory. We give some examples of
inductive-inductive definitions, such as the set of surreal numbers. We then
give a new finite axiomatisation of the principle of induction-induction, and
prove its consistency by constructing a model.

1 Introduction

When using Martin-Löf type theory [ML84] for programming and theorem proving,
one soon notices the need for more complex data types which are syntactically
closer to their intended meaning. Examples include indexing data types with extra
information in order to express properties of their elements, or constructing a
universe in order to quantify over a large collection.

The programming language and proof assistant Agda [Nor07] supports many
such data types, however without a complete theoretical foundation. The proof
assistant Coq [Coq12], on the other hand, does not at present support some of the
more advanced data types that Agda does. With the current article, we wish to
address both these issues for a form of data type which we call inductive-inductive
definitions, for reasons that will become clear below. Inductive-inductive definitions
have been used by several researchers in different areas – see Section 1.1 for some
examples.

Let us now look at some examples of inductive definitions, such as the natural
numbers, lists, well-orderings, the identity set, finite sets, and a universe à la Tarski.
These examples can be categorised as different kinds of inductive definitions.
∗Both authors are supported by EPSRC grant EP/G033374/1, Theory and applications of induction-

recursion.

1

2 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

The first few (up to well-orderings) are just ordinary inductive definitions, where
a single set is defined inductively. A typical example is the type W (A,B) of
well-orderings, parameterised by A ∶ Set, B ∶ A→ Set. The introduction rule is:

a ∶ A f ∶ B(a) →W (A,B)
sup(a, f) ∶W (A,B)

Here a ∶ A is a non-inductive argument, whereas f ∶ B(a) → W (A,B) is an
inductive argument because of the occurrence of W (A,B). Note how the later
argument depends on the earlier non-inductive argument.

The identity type and the finite sets are examples of inductive families, where
a family X ∶ I → Set for some fixed index set I is defined inductively simultane-
ously [Dyb94]. For the family Fin ∶ N → Set of finite sets, the index set is N, and
we have introduction rules

n ∶ N
zn ∶ Fin(n + 1)

n ∶ N m ∶ Fin(n)
sn(m) ∶ Fin(n + 1)

Thus the type Fin(n + 1) has n + 1 elements zn, sn(zn−1), sn(sn−1(zn−2)) up to
sn(sn−1(⋯s1(z0))). The type of the inductive argument m ∶ Fin(n) of the second
rule has index n, which is different from the index n+1 of the type of the constructed
element. Thus the whole family has to be defined simultaneously.

The universe à la Tarski is an example of an inductive-recursive definition,
where a set U is defined inductively together with a recursive function T ∶ U →
Set [Dyb00]. The constructors for U may depend negatively on T applied to
elements of U , as is the case if U , for example, is closed under dependent function
spaces:

a ∶ U b ∶ T (a) → U

π(a, b) ∶ U
with T (π(a, b)) = (x ∶ T (a)) → T (b(x)).1

Here, T ∶ U → Set is defined recursively. Sometimes, however, one might
not want to give T (u) completely as soon as u ∶ U is introduced, but instead
define T inductively as well. This is the principle of induction-induction. A set
A is inductively defined simultaneously with an A-indexed set B, which is also
inductively defined, and the introduction rules for A may also refer to B. Typical
introduction rules might take the form

a ∶ A b ∶ B(a) . . .

introA(a, b, . . .) ∶ A
a0 ∶ A b ∶ B(a0) a1 ∶ A . . .

introB(a0, b, a1, . . .) ∶ B(a1)
1The notation for the dependent function space and other type-theoretical constructs is explained in

Section 2.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 3

Notice that this is not a simple mutual inductive definition of two sets, as B is
indexed by A. It is not an ordinary inductive family, as A may refer to B. Finally,
it is not an instance of induction-recursion, as B is constructed inductively, not
recursively (see Section 1.2 for the difference).

Coq does at present not support inductive-inductive definitions, whereas Agda
does, without a theoretical foundation. Working towards a justification of Agda’s
inductive-inductive definitions, and an inclusion of such definitions in Coq, we give
a new finite axiomatisation of a type theory with inductive-inductive definitions. It
differs from our earlier axiomatisation [NFS10] in that it is finite, and is hopefully
easier to understand. The current article is also somewhat different in scope from our
CALCO paper [AMNFS11], which focuses on a categorical semantics and shows
that the elimination rules (not treated here) are equivalent to the initiality of certain
algebras.

Related work Backhouse et. al. [BCMS89, Bac88] and Dybjer [Dyb94, Dyb00]
gave external schemas for ordinary inductive sets, inductive families and inductive
definitions, which later Dybjer and Setzer [DS99, DS03, DS06] internalised. This is
where we take most of our inspiration from. Recently, Ghani and Hancock [GH12]
have shed new light on this construction.

The idea of a universe of data types is also present in Epigram 2 [CDMM10],
and has previously been used by Altenkirch, Ghani, Morris and McBride to study
strictly positive types [MAM06b] and strictly positive families [MAG09] (see also
Morris’ thesis [Mor07]). Here data types are given a more semantic account via the
theory of containers [AAG05] and indexed containers [AM09].

1.1 Examples of inductive-inductive definitions

In this section, we give some examples of inductive-inductive definitions, starting
with the perhaps most important one:

Example 1 (Contexts and types). Danielsson [Dan07] and Chapman [Cha09] model
the syntax of dependent type theory in the theory itself by inductively defining
contexts, types (in a given context) and terms (of a given type). To see the inductive-
inductive nature of the construction, it is enough to concentrate on contexts and
types.

Informally, we have an empty context ε, and if we have any context Γ and a
valid type σ in that context, then we can extend the context with a fresh variable
x ∶ σ to get a new context Γ, x ∶ σ. This is the only way contexts are formed. We
end up with the following inductive definition of the set of contexts (with Γ ▷ σ

4 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

meaning Γ, x ∶ σ since we are using de Bruijn indices):

ε ∶ Ctxt

Γ ∶ Ctxt σ ∶ Ty(Γ)
Γ▷ σ ∶ Ctxt

Moving on to types, we have a base type ι (valid in any context) and dependent
function types: if σ is a type in context Γ, and τ is a type in Γ, x ∶ σ (x is the variable
from the domain), then Π(σ, τ) is a type in the original context. This leads us to the
following inductive definition of Ty ∶ Ctxt→ Set:

Γ ∶ Ctxt
ιΓ ∶ Ty(Γ)

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ▷ σ)
ΠΓ(σ, τ) ∶ Ty(Γ)

Note that the definition of Ctxt refers to Ty, so both sets have to be defined
simultaneously. Note also how the introduction rule for Π explicitly focuses on a
specific constructor in the index of the type of τ . ∎

Often, one wishes to define a setAwhere all elements ofA satisfy some property
P ∶ A → Set. If P is inductively defined, one can define A and P simultaneously
and achieve that every element of A satisfies P by construction. One example of
such a data type is the type of sorted lists:

Example 2 (Sorted lists). Let us define a data type consisting of sorted lists (of
natural numbers, say). With induction-induction, we can simultaneously define the
set SortedList of sorted lists and the predicate ≤L∶ (N × SortedList) → Set with
n ≤L ` true if n is less than or equal to every element of `.

The empty list is certainly sorted, and if we have a proof p that n is less than or
equal to every element of the list `, we can put n in front of ` to get a new sorted list
cons(n, `, p). Translated into introduction rules, this becomes:

nil ∶ SortedList

n ∶ N ` ∶ SortedList p ∶ n ≤L `

cons(n, `, p) ∶ SortedList

For ≤L, we have that every m ∶ N is trivially smaller than every element of the empty
list, and if m ≤ n and inductively m ≤L `, then m ≤L cons(n, `, p):

trivm ∶m ≤L nil

q ∶m ≤ n pm,` ∶m ≤L `

≪ q, pm,` ≫ ∶m ≤L cons(n, `, p)

This makes sense even if the order ≤ is not transitive. If it is (as the standard order
on the natural numbers is, for example), the argument pm,` ∶m ≤L ` can be dropped
from the constructor ≪ ⋅ ≫, since we already have q ∶m ≤ n and p ∶ n ≤L `, hence
by transitivity we must have m ≤L `.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 5

Of course, there are also many alternative ways to define such a data type using
ordinary induction (or using e.g. induction-recursion, similarly to C. Coquand’s
definition of fresh lists as reported by Dybjer [Dyb00]). ∎

Example 3 (Conway’s surreal numbers). Conway [Con01] informally uses induction-
induction (but couched in ZF set theory, not type theory) in order to define his surreal
numbers. The class 2 of surreal numbers is defined inductively, together with an
order relation on surreal numbers which is also defined inductively:

• A surreal number X = (XL,XR) consists of two sets XL and XR of surreal
numbers, such that no element from XL is greater than any element from XR.

• A surreal number Y = (YL, YR) is greater than another surreal number X =
(XL,XR), X ≤ Y , if and only if

– there is no x ∈XL such that Y ≤ x, and

– there is no y ∈ YR such that y ≤X .

Both rules can be understood as inductive definitions. Notice how the second
definition only makes sense in the presence of the first definition, and how the first
definition already refers to the second.

As an inductive definition, the negative occurrence of ≤ in the definition of the
class of surreal numbers is problematic. We can get around this by simultaneously
defining the class Surreal ∶ Set together with two relations ≤ ∶ Surreal→ Surreal→
Set and /≤ ∶ Surreal→ Surreal→ Set as follows:

• If XL and XR are sets of surreal numbers, and for all x ∈ XL, y ∈ XR we
have x /≤ y, then (XL,XR) is a surreal number.

• Assume X = (XL,XR) and Y = (YL, YR) are surreal numbers. If

– for all x ∈XL we have Y /≤ x, and

– for all y ∈ YR we have y /≤X ,

then X ≤ Y .

• Assume X = (XL,XR) and Y = (YL, YR) are surreal numbers.

– If there exist x ∈XL such that Y ≤ x, then X /≤ Y .

– If there exist y ∈ YR such that y ≤X , then X /≤ Y .
2The surreal numbers form a class, not a set, since they contain the class of ordinals. This can be

avoided by referring to a universe.

6 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

We see that Surreal ∶ Set together with ≤, /≤∶ Surreal→ Surreal→ Set are defined
inductive-inductively.

Mamane [Mam06a] develops the theory of surreal numbers in the proof assistant
Coq, using an encoding to reduce the inductive-inductive definition to an ordinary
inductive one. ∎

Note that these examples strictly speaking refer to extensions of inductive-
inductive definitions as presented in this article. Example 1 in full would be an
example of a defining of a telescope A ∶ Set, B ∶ A → Set, C ∶ (x ∶ A) → B(x) →
Set, . . . inductive-inductively. In Example 2, A ∶ Set and B ∶ A→ I → Set for some
previously defined set I is defined, and Example 3 gives an inductive-inductive
definition of A ∶ Set, B,B′ ∶ A → A → Set. In the future, we plan to publish an
axiomatisation which captures all these examples in full. For pedagogical reasons,
we think it is preferable to first only treat the simpler case A ∶ Set, B ∶ A→ Set as
in the current article.

1.2 Inductive-inductive definitions versus inductive-recursive
definitions

In both an inductive-inductive and an inductive-recursive definition, a set U and
a family T ∶ U → Set are defined simultaneously. The difference between the
two principles is how T is defined: inductively or recursively. We discuss in the
following first the difference between an inductive and a recursive definition. To
exemplify this difference, consider the following two definitions of a data type
Nonempty ∶ N → Set of non-empty lists of a certain length (with elements from a
set A):

Inductive definition The singleton list [a] has length 1, and if a is an element, and
the list ` has length n, then cons(a, `) is a list of length n+ 1. As an inductive
definition, this becomes

a ∶ A
[a] ∶ Nonemptyind(1)

a ∶ A ` ∶ Nonemptyind(n)
cons(a, `) ∶ Nonemptyind(n + 1)

Notice that there is no constructor which constructs elements in the set
Nonemptyind(0).

Recursive definition If the recursive definition of the data type, we define the set

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 7

Nonemptyrec(n) for every natural number:

Nonemptyrec(0) = 0

Nonemptyrec(1) = A
Nonemptyrec(n + 2) = A ×Nonemptyrec(n + 1)

In the recursive definition, Nonemptyrec(k) is defined in one go, whereas the
inductively defined Nonemptyind(k) is built up from below. In order to prove that
the instance Nonemptyind(0) of the inductive definition is empty, one has to carry
out a proof by induction over Nonemptyind.

This difference is now carried over to an inductive-recursive/inductive-inductive
definition of U ∶ Set, T ∶ U → Set. In an inductive-inductive definition, T is
generated inductively, i.e. given by a constructor introT ∶ (x ∶ F (U,T)) → T (i(x))
for some (strictly positive) functor F . In an inductive-recursive definition, on the
other hand, T is defined by recursion on the way the elements of U are generated.
This means that T (introU(x)) must be given completely as soon as the constructor
introU ∶ G(U,T) → U is introduced.

There are some practical differences between the two approaches. An inductive-
inductive definition gives more freedom to describe the data type, in the sense that
many different constructors for T can contribute to the set T (introU(x)). However,
because of the inductive generation of T , T can only occur positively in the type of
the constructors for U (and T), whereas T can occur also negatively in an inductive-
recursive definition.

2 Type-theoretical preliminaries

We work in a type theory with at least two universes Set and Type, with Set ∶ Type
and Set a subuniverse of Type, i.e. if A ∶ Set then A ∶ Type. Both Set and Type are
closed under dependent function types, written (x ∶ A) → B, where B is a set or
type depending on x ∶ A. Abstraction is written as λx ∶ A.e, where e ∶ B depending
on x ∶ A, and application as f(x). Repeated abstraction and application are written
as λx1 ∶ A1 . . . xk ∶ Ak.e and f(x1, . . . , xk). If the type of x can be inferred, we
simply write λx.e as an abbreviation. Furthermore, both Set and Type are closed
under dependent products, written (x ∶ A) ×B, where B is a set or type depending
on x ∶ A, with pairs ⟨a, b⟩, where a ∶ A and b ∶ B[x := a]. We also have β- and
η-rules for both dependent function types and products.

We add an empty type 0 ∶ Set, with elimination !A ∶ 0→ A for every A ∶ Set
(we will write ! for !A if A can be inferred from the context). We also add a unit
type 1 ∶ Set, with unique element ⋆ ∶ 1 and an η-rule stating that if x ∶ 1, then

8 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

x = ⋆ ∶ 1. Moreover, we include a two element set 2 ∶ Set, with elements tt ∶ 2,
ff ∶ 2 and elimination constant if ⋅ then ⋅ else ⋅ ∶ (a ∶ 2) → A(tt) → A(ff) →
A(a) where i ∶ 2 ⇒ A(i) ∶ Type. It satisfies the obvious computation rules, i.e.
if tt then a else b = a and if ff then a else b = b.

With if ⋅ then ⋅ else ⋅ and dependent products, we can now define the
disjoint union of two sets A + B := (x ∶ 2) × (if x then A else B) with con-
structors inl = λa ∶ A.⟨tt, a⟩ and inr = λb ∶ B.⟨ff, b⟩, and prove the usual for-
mation, introduction, elimination and equality rules. Importantly, we get large
elimination for sums, since we have large elimination for 2. We can define the
eliminator [f, g] ∶ (c ∶ A +B) → C(c), where x ∶ A + B ⇒ C(x) ∶ Type and
f ∶ (a ∶ A) → C(inl(a)), g ∶ (b ∶ B) → C(inr(b)), satisfying the definitional
equalities

[f, g](inl(a)) = f(a) ,

[f, g](inr(b)) = g(b) .

Intensional type theory in Martin-Löf’s logical framework extended with depen-
dent products and 0, 1, 2 has all the features we need. Thus, our development can
be seen as an extension of the logical framework.

3 A finite axiomatisation

In this section, we give a finite axiomatisation of a type theory with inductive-
inductive definitions. This axiomatisation differs slightly from our previous axioma-
tisation [NFS10], and is hopefully easier to understand. However, the definable sets
should be the same for both axiomatisations.

The main idea, following Dybjer and Setzer’s axiomatisation of inductive-recur-
sive definitions [DS99], is to construct a universe consisting of codes for inductive-
inductive definitions, together with a decoding function, which maps a code ϕ to the
domain of the constructor for the inductively defined set represented by ϕ. We will
actually use two universes; one to describe the constructors for the index set A, and
one to describe the constructors of the second component B ∶ A→ Set. Just as the
constructors for B ∶ A→ Set can depend on the constructors for the first set A, the
universe SP0

B ∶ SP0
A → Type of codes for the second component will depend on the

universe SP0
A of codes for the first.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 9

3.1 Dissecting an inductive-inductive definition

We want to formalise and internalise an inductive-inductive definition given by
constructors

introA ∶ ΦA(A,B) → A

and
introB ∶ (x ∶ ΦB(A,B, introA)) → B(θ(x))

for some ΦA(A,B) ∶ Set, ΦB(A,B, introA) ∶ Set and θ ∶ ΦB(A,B, introA) → A.
Here, θ(x) is the index of introB(x), i.e. the element a ∶ A such that introB(x) ∶
B(a).

Not all expressions ΦA and ΦB give rise to acceptable inductive-inductive
definitions. It is well known, for example, that the theory easily becomes inconsistent
if A or B occur in negative positions in ΦA or ΦB respectively. Thus, we restrict
our attention to a class of strictly positive functors.

These are based on the following analysis of what kind of premises can occur
in a definition. A premise is either inductive or non-inductive. A non-inductive
premise consists of a previously constructed set K, on which later premises can
depend. An inductive premise is inductive in A or B. If it is inductive in A, it is of
the form K → A for some previously constructed set K. Premises inductive in B
are of the form (x ∶K) → B(i(x)) for some i ∶K → A.

If K = 1, we have the special case of a single inductive premise. In the case
of B-inductive arguments, the choice of i ∶ 1→ A is then just a choice of a single
element a = i(⋆) ∶ A so that the premise is of the form B(a).

3.2 The axiomatisation

We now give the formal rules for an inductive-inductive definition of A ∶ Set,
B ∶ A→ Set. These consists of a set of rules for the universe SP0

A of descriptions of
the set A and its decoding function Arg0

A, a set of rules for the universe SP0
B and its

decoding function Arg0
B, and formation and introduction rules for A ∶ Set, B ∶ A→

Set defined inductive-inductively by a pair of codes γA ∶ SP0
A, γB ∶ SP0

B(γA).

3.2.1 The universe SP0
A of descriptions of A

We introduce the universe of codes for the index set with the formation rule

Aref ∶ Set

SPA(Aref) ∶ Type

The set Aref should be thought of as the elements of A that we can refer to in the
code that we are defining. To start with, we cannot refer to any elements in A, and

10 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

so we define SP0
A := SPA(0). After introducing an inductive argument a ∶ A, we

can refer to a in later arguments, so that Aref will be extended to include a as well
for the construction of the rest of the code.

The introduction rules for SPA reflects the informal discussion in Section 3.1.
The rules are as follows (we suppress the global premise Aref ∶ Set):

nil ∶ SPA(Aref)

The code nil represents a trivial constructor c ∶ 1→ A (a base case).

K ∶ Set γ ∶K → SPA(Aref)
non-ind(K,γ) ∶ SPA(Aref)

The code non-ind(K,γ) represents a non-inductive argument x ∶K, with the rest of
the arguments given by γ(x).

K ∶ Set γ ∶ SPA(Aref +K)
A-ind(K,γ) ∶ SPA(Aref)

The code A-ind(K,γ) represents an inductive argument with type K → A, with
the rest of the arguments given by γ. Notice that γ ∶ SPA(Aref +K), so that the
remaining arguments can refer to more elements in A (namely those introduced by
the inductive argument).

K ∶ Set hindex ∶K → Aref γ ∶ SPA(Aref)
B-ind(K,hindex, γ) ∶ SPA(Aref)

Finally, the code B-ind(K,hindex, γ) represents an inductive argument with type
(x ∶K) → B(i(x)), where the index i(x) is determined by hindex, and the rest of
the arguments are given by γ.

Example 4. The constructor ▷ ∶ ((Γ ∶ Ctxt) × Ty(Γ)) → Ctxt is represented by
the code

γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶ 1) . Γ̂,nil)) ,

where Γ̂ = inr(⋆) is the representation of Γ in Aref = 0 + 1. ∎

We now define the decoding function ArgA, which maps a code to the domain
of the constructor it represents. In addition to a set Xref and a code γ ∶ SPA(Xref),
ArgA will take a set X and a family Y ∶ X → Set as arguments to use as A and
B in the inductive arguments. These will later be instantiated by the sets defined
inductive-inductively. We also require a function repX ∶Xref →X which we think

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 11

of as mapping a “referable” element to the element it represents in X . Thus, ArgA

has the following formation rule:

Xref ∶ Set γ ∶ SPA(Xref) X ∶ Set Y ∶X → Set repX ∶Xref →X

ArgA(Xref , γ,X,Y, repX) ∶ Set

Notice that if γ ∶ SP0
A, i.e. if Xref = 0, then we can choose repX = !X ∶ 0 → X

(indeed, extensionally, this is the only choice), so that we can define

Arg0
A ∶ SP0

A → (X ∶ Set) → (Y ∶X → Set) → Set

by Arg0
A(γ,X,Y) = ArgA(0, γ,X,Y, !X).

The definition of ArgA follows the informal description of what the different
codes represent above3:

ArgA(,nil, , ,) = 1

ArgA(,non-ind(K,γ), , ,) = (x ∶K) ×ArgA(, γ(x), , ,)
ArgA(Xref ,A-ind(K,γ),X, , repX) =

(j ∶K →X) ×ArgA(Xref +K,γ, , , [repX, j])
ArgA(,B-ind(K,hindex, γ), , Y, repX) =

((x ∶K) → Y ((repX ○ hindex)(x))) ×ArgA(, γ, , ,)

Example 5. Recall the code γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶ 1) . inr(⋆),nil)) for the
constructor ▷ ∶ ((Γ ∶ Ctxt) ×Ty(Γ)) → Ctxt. We have

Arg0
A(γ▷,Ctxt,Ty) = (Γ ∶ 1→ Ctxt) × (1→ Ty(Γ(⋆))) × 1

which, thanks to the η-rules for 1, × and →, is isomorphic to the domain of ▷. ∎

3.2.2 Towards descriptions of B

As we have seen in Example 1, it is important that the constructor introB for the
second set B ∶ A → Set can refer to the constructor introA for the first set A.
This means that inductive arguments might be of type B(introA(a)) for some
a ∶ Arg0

A(γA,A,B) or even B(introA(. . . introA . . . (a))) for some
a ∶ Arg0

A(γA, . . .Arg0
A(γA,A,B) . . . ,B′). Thus, we need to be able to represent

such indices in the descriptions of the constructor introB.
First, it is no longer enough to only keep track of the referable elements Xref

of X – we need to be able to refer to elements of B as well, since they could be
3For readability, we have replaced arguments which are simply passed on with “ ” in the recursive

call, and likewise on the left hand side if the argument is not used otherwise.

12 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

used as arguments to introA. We will represent the elements of Y we can refer to
by a set Yref , together with functions repindex ∶ Yref → X and repY ∶ (x ∶ Yref) →
Y (repindex(x)) ; the function repindex gives the index of the represented element,
and repY the actual element.

We want to represent elements in Arg0
A(γA,X,Y). We claim that the elements

in Arg0
A(γA,Xref + Yref , [λx .0, λx .1]) are suitable for this purpose. To see this,

first observe that we can define functions

f ∶Xref + Yref →X ,

g ∶ (x ∶Xref + Yref) → [λx .0, λx .1](x) → Y (f(x))

by f = [repX, repindex] and g = [λx . !, λx ⋆ . repY(x)]. Then, we can lift these
functions to a function

Arg0
A(γA, f, g) ∶ Arg0

A(γA,Xref + Yref , [λx .0, λx .1]) → Arg0
A(γA,X,Y)

by observing that Arg0
A(γA) is functorial:

Lemma 6. For each γ ∶ SP0
A, Arg0

A(γ) extends to a functor from families of sets to
sets, i.e. given f ∶ X → X ′ and g ∶ (x ∶ X) → Y (x) → Y ′(f(x)), one can define
Arg0

A(γ, f, g) ∶ Arg0
A(γ,X,Y) → Arg0

A(γ,X ′, Y ′).

Remark 7. In extensional type theory, one can also prove that Arg0
A(γ, f, g) ∶

Arg0
A(γ,X,Y) → Arg0

A(γ,X ′, Y ′) actually is a functor, i.e. that identities and
compositions are preserved, but that will not be needed for the current development.

Proof. This is straightforward in extensional type theory. In intensional type theory
without propositional identity types, we have to be more careful. The function
Arg0

A(γ, f, g) is defined by induction over γ. In order to do this, we need to refer
inductively to the case when Xref is no longer 0. Hence, we need to consider
the more general case where X , Y , X ′, Y ′, f and g have types as above, and
Xref ∶ Set, repX ∶ Xref → X , rep′X ∶ Xref → X ′. One expects the equality
f(repX(x)) = rep′X(x) to hold for all x ∶ Xref . In order to avoid the use of
identity types, we state this in a form of Leibniz equality, specialised to the instance
we actually need; we require a term

p ∶ (x ∶Xref) → Y ′(f(repX(x))) → Y ′(rep′X(x)) .

Thus we define

ArgA(γ, f, g, p) ∶ ArgA(Xref , γ,X,Y, repX) → ArgA(Xref , γ,X
′, Y ′, rep′X)

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 13

by induction over γ:

ArgA(nil, f, g, p,⋆) = ⋆
ArgA(non-ind(K,γ), f, g, p, ⟨k, y⟩) = ⟨k,ArgA(γ(k), f, g, p, y)⟩

ArgA(A-ind(K,γ), f, g, p, ⟨j, y⟩) = ⟨f ○ j,ArgA(γ, f, g, [p, λx . id], y)⟩
ArgA(B-ind(K,hindex, γ), f, g, p, ⟨j, y⟩) =

⟨λk . p(hindex(k), g(repX(hindex(k)), j(k))),ArgA(γ, f, g, p, y)⟩

Finally, we can define Arg0
A(γ, f, g) ∶ Arg0

A(γ,A,B) → Arg0
A(γ,A′,B′) by

Arg0
A(γ, f, g) := ArgA(γ, f, g, !) . ◻

Recall that we want to use the lemma to represent elements in Arg0
A(γA,X,Y)

by elements in Arg0
A(γA,Xref + Yref , [λx .0, λx .1]). We can actually do better,

and represent arbitrarily terms built from elements in X and Y with the use of a
constructor introA ∶ Arg0

A(γA,X,Y) →X . For this, define the set
A-Term(γA,Xref , Yref) of terms “built from introA, Xref and Yref” with introduc-
tion rules

x ∶Xref

aref(x) ∶ A-Term(γA,Xref , Yref)
x ∶ Yref

bref(x) ∶ A-Term(γA,Xref , Yref)

x ∶ Arg0
A(γA,A-Term(γA,Xref , Yref),B-Term(γA,Xref , Yref))

arg(x) ∶ A-Term(γA,Xref , Yref)

Here, B-Term(γA,Xref , Yref) ∶ A-Term(γA,Xref , Yref) → Set is defined by

B-Term(γA,Xref , Yref , aref(x)) = 0
B-Term(γA,Xref , Yref ,bref(x)) = 1
B-Term(γA,Xref , Yref , arg(x)) = 0

Note that this is formally an inductive-recursive definition. The intuition behind the
definition of B-Term is that all elements of Y we know are represented in Yref , and
only in Yref .

All elements in A-Term(γA,Xref , Yref) represents elements in X , given that
we have a function introA ∶ Arg0

A(γA,X,Y) → X and the elements of Xref and
Yref represents elements of X and Y respectively (i.e. we have repX ∶ Xref → X ,
repindex ∶ Yref → X and repY ∶ (x ∶ Yref) → Y (repindex(x))). Formally, we can

14 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

simultaneously define the following two functions:

γA ∶ SP0
A introA ∶ Arg0

A(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
repA(. . .) ∶ A-Term(γA,Xref , Yref) →X

repB(. . .) ∶ (x ∶ A-Term(γA,Xref , Yref)) → B-Term(γA,Xref , Yref , x) → Y (repA(. . . , x))

The definition of repA is straightforward. The interesting case is arg(x), where
we make use of the constructor introA, the functoriality of Arg0

A and the mutually
defined repB:

repA(γA, introA, repX, repindex, repY, aref(x)) = repX(x)
repA(γA, introA, repX, repindex, repY,bref(x)) = repindex(x)
repA(γA, introA, repX, repindex, repY, arg(x)) =

introA(Arg0
A(γA, repA(. . .), repB(. . .), x))

The simultaneously defined repB is very simple:

repB(γA, introA, repX, repindex, repY, aref(x), y) = !(y)
repB(γA, introA, repX, repindex, repY,bref(x),⋆) = repY(y)
repB(γA, introA, repX, repindex, repY, arg(x), y) = !(y)

Example 8. We define some terms in A-Term(γ▷,Xref , Yref), where

γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶ 1) . inr(⋆),nil))

is the code for the constructor

▷ ∶ ((Γ ∶ 1→ A) × (1→ B(Γ(⋆))) × 1) → A .

Suppose that we have â ∶Xref with repX(â) = a ∶ A and b̂ ∶ Yref with repindex(b̂) = a
and repY(b̂) = b ∶ B(a). We then have

• aref(â) ∶ A-Term(γ▷,Xref , Yref) with repA(γ▷,▷, . . . , â) = a (so elements
from Xref are terms).

• bref(b̂) ∶ A-Term(γ▷,Xref , Yref) with repA(γ▷,▷, . . . ,bref(b̂)) = a (so ele-
ments from Yref are terms, representing the index of the element in B they
represent). Furthermore repB(γ▷,▷, . . . ,bref(b̂),⋆) = b.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 15

• â, b := arg(⟨(λ ⋆ .bref(b̂)), ⟨(λ ⋆ .⋆),⋆⟩⟩) ∶ A-Term(γ▷,Xref , Yref) with

repA(γ▷,▷, . . . , â, b) = (repindex(b̂)) ▷ (repY(b̂)) = a▷ b .

∎

3.2.3 The universe SP0
B of descriptions of B

We now introduce the universe SPB of descriptions for B. It has formation rule

Aref ,Bref ∶ Set γA ∶ SP0
A

SPB(Aref ,Bref , γA) ∶ Type

Again, we are interested in codes which initially do not refer to any elements and
define SP0

B ∶ SP0
A → Type by SP0

B(γA) := SPB(0,0, γA).
The introduction rules for SPB are similar to the ones for SPA. However, we

now need to specify an index for the codomain of the constructor, and indices for
arguments inductive in B can be arbitrary terms built up from introA and elements
we can refer to.

a ∶ A-Term(γA,Aref ,Bref)
nil(a) ∶ SPB(Aref ,Bref , γA)

The code nil(â) represents a trivial constructor c ∶ 1 → B(a) (a base case), where
the index a is encoded by â ∶ A-Term(γA,Aref ,Bref).

K ∶ Set γ ∶K → SPB(Aref ,Bref , γA)
non-ind(K,γ) ∶ SPB(Aref ,Bref , γA))

The code non-ind(K,γ) represents a non-inductive argument x ∶K, with the rest of
the arguments given by γ(x).

K ∶ Set γ ∶ SPB(Aref +K,Bref , γA)
A-ind(K,γ) ∶ SPB(Aref ,Bref , γA)

The code A-ind(K,γ) represents an inductive argument with type K → A, with the
rest of the arguments given by γ.

K ∶ Set hindex ∶K → A-Term(Aref ,Bref , γA) γ ∶ SPB(Aref ,Bref +K,γA)
B-ind(K,hindex, γ) ∶ SPB(Aref ,Bref , γA)

At last, the code B-ind(K,hindex, γ) represents an inductive argument with type
(x ∶K) → B(i(x)), where the index i(x) is determined by hindex, and the rest of
the arguments are given by γ. Notice how the index is now encoded by arbitrary
terms in A-Term(Aref ,Bref , γA).

16 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

Example 9. The constructor

Π ∶ ((Γ ∶ Ctxt) × (σ ∶ Ty(Γ)) ×Ty(Γ▷ σ)) → Ty(Γ)

is represented by the code

γΠ = A-ind(1,B-ind(1, λ ⋆ . Γ̂,B-ind(1, λ ⋆ . ̂in⟨Γ, σ⟩,nil(Γ̂))))

where Γ̂ = aref(inr(⋆)) is the element representing the first argument Γ ∶ Ctxt and
̂in⟨Γ, σ⟩ = arg(⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩) is the element representing Γ▷ σ.

∎

The definition of ArgB should now not come as a surprise. First, we have a
formation rule:

γA ∶ SP0
A

Xref , Yref ∶ Set
γ ∶ SPB(Xref , Yref , γA)

X ∶ Set
Y ∶X → Set

introA ∶ ArgA(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
ArgB(Xref , Yref , γA,X,Y, introA, repX, repindex, repY, γ) ∶ Set

The definition can be simplified for codes in SP0
B(γA):

Arg0
B(γA,X,Y, introA, γ) := ArgB(0,0, γA,X,Y, introA, !, !, !, γ)

We define4:

ArgB(, , , , , , , , ,nil(a)) = 1

ArgB(, , , , , , , , ,non-ind(K,γ)) = (x ∶K) ×ArgB(, , , , , , , , , γ(x))
ArgB(Xref , , ,X, , , repX, , ,A-ind(K,γ))

= (j ∶K →X) ×ArgB(Xref +K, , , , , , [repX, j], , , γ)
ArgB(, Yref , γA, , Y, introA, repX, repindex, repY,B-ind(K,hindex, γ))

= (j ∶ (x ∶K) → Y ((repA(γA, introA, repX, repindex, repY) ○ hindex)(x))) ×
ArgB(, Yref +K, , , , , , [repindex, repA(. . .) ○ hindex], [repY, j], γ)

Finally, we need the function Index0
B(. . .) ∶ ArgB(γA, γB,X,Y, introA) → X

which to each b ∶ ArgB(γA, γB,X,Y, introA) assigns an index a ∶ X such that the
element constructed from b is in Y (a).

γA ∶ SP0
A

Xref , Yref ∶ Set
γ ∶ SPB(Xref , Yref , γA)

X ∶ Set
Y ∶X → Set

introA ∶ ArgA(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
IndexB(Xref , Yref , γA,X,Y, introA, repX, repindex, repY, γ) ∶ ArgB(. . .) →X

4Once again, we have for readability replaced arguments which are simply passed on with “ ” in the
recursive call, and likewise on the left hand side if the argument is not used otherwise.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 17

For codes in SP0
B(γA), we define Index0

B ∶ Arg0
B(γA,X,Y, introA, γB) →X by

Index0
B(γA,X,Y, introA, γB) := IndexB(0,0, γA,X,Y, introA, !, !, !, γB).

The equations by neccessity follows the same pattern as the equations for ArgB.
For the base case γB = nil(a), we use repX(. . . , a), and for the other cases, we just
do a recursive call5

IndexB(, , γA, , , introA, repX, repindex, repY,nil(a),⋆)
= repA(γA, introA, repX, repindex, repY, a)

IndexB(, , , , , , , , ,non-ind(K,γ), ⟨k, y⟩)
= IndexB(, , , , , , , , , γ(k), y)

IndexB(Xref , , ,X, , , repX, , ,A-ind(K,γ), ⟨j, y⟩)
= IndexB(Xref +K, , , , , , [repX, j], , , γ, y)

IndexB(, Yref , γA, , Y, introA, repX, repindex, repY,B-ind(K,hindex, γ), ⟨j, y⟩)
= IndexB(, Yref +K, , , , , , [repindex, repA(. . .) ○ hindex], [repY, j], γ, y)

Example 10. The constructor Π ∶ ((Γ ∶ Ctxt)×(σ ∶ Ty(Γ))×Ty(Γ▷σ)) → Ty(Γ)
from Example 1 is represented by the code

γΠ = A-ind(1,B-ind(1, (λ ⋆ . Γ̂),B-ind(1, (λ ⋆ . Γ̂▷ σ,nil(Γ̂))))) ∶ SP0
B(γ▷) ,

where Γ̂ = aref(inr(⋆)) ∶ A-Term(0 + 1,0, γ▷) and

Γ̂▷ σ = arg(⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩) ∶ A-Term(0 + 1,0 + 1, γ▷) .

We have

Arg0
B(γ▷,Ctxt,Ty,▷, γΠ) =

(Γ ∶ 1→ Ctxt) × (σ ∶ 1→ Ty(Γ(⋆))) × (1→ Ty(Γ(⋆) ▷ σ(⋆)) × 1

and Index0
B(γ▷,Ctxt,Ty,▷, γΠ, ⟨Γ, σ, τ,⋆⟩) = Γ(⋆). ∎

3.2.4 Formation and introduction rules

We are now ready to give the formation and introduction rules for A and B. They
all have the common premises γA ∶ SP0

A, γB ∶ SP0
B(γA), which will be omitted.

Formation rules:

AγA,γB ∶ Set BγA,γB ∶ AγA,γB → Set

5Simply passed on and otherwise not used arguments have been replaced with “ ” for readability.

18 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

Introduction rule for AγA,γB :

a ∶ Arg0
A(γA,AγA,γB ,BγA,γB)

introAγA,γB (a) ∶ AγA,γB

Introduction rule for BγA,γB :

a ∶ Arg0
B(γA,AγA,γB ,BγA,γB , introAγA,γB , γB)

introBγA,γB (a) ∶ BγA,γB(Index0
B(γA,AγA,γB ,BγA,γB , introAγA,γB , γB, a))

3.2.5 Elimination rules by example

Elimination rules can also be formulated [AMNFS11]. Here, we just give the
elimination rules for the data type of sorted lists (Example 2) as an example, and
show how one can use them to define a function which inserts a number into a sorted
list.6

Example 11. The elimination rules for sorted lists and the ≤L predicate state that
functions elimSortedList and elim≤L with the following types exist:

elimSortedList ∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ P (`) → Set) →
(stepnil ∶ P (nil)) →
(stepcons ∶ (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `) → (̃̀∶ P (`))

→ Q(n, `, p, ̃̀) → P (cons(n, `, p))) →
(steptriv ∶ (m ∶ N) → Q(m,nil, trivn, stepnil)) →
(step≪⋅≫ ∶ (m ∶ N) → (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ (q ∶m ≤ n) → (p′ ∶m ≤L `) → (̃̀∶ P (`))
→ (p̃ ∶ Q(n, `, p, ̃̀)) → (p̃′ ∶ Q(m,`, p′, ̃̀))
→ Q(m, cons(n, `, p),≪ q, p′ ≫, stepcons(n, `, p, ̃̀, p̃))) →

(` ∶ SortedList) → P (`) ,

6The inductive-inductive definition of the data type of sorted lists falls outside the axiomatisation
presented in this article, as remarked at the end of Section 1.1. We still include this example, as it shows
the use of elimination rules in a real computer science example.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 19

elim≤L ∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ P (`) → Set) →
(stepnil ∶ . . .) →
(stepcons ∶ . . .) →
(steptriv ∶ . . .) →
(step≪⋅≫ ∶ . . .) →
(n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ Q(n, `, p, elimSortedList(. . . , `)) .

with computation rules

elimSortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,nil) = stepnil

and

elimSortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫, cons(n, `, p))
= stepcons(n, `, p, elimSortedList(. . . , `), elim≤L(. . . , n, `, p))

for elimSortedList, and

elim≤L(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,m,nil, trivm) = steptriv(m)

and

elim≤L(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,m, cons(n, `, p),≪ q, p′ ≫)
= step≪⋅≫(m,n, `, p, q, p′, elimSortedList(. . . , `),

elim≤L(. . . , n, `, p), elim≤L(. . . ,m, `, p′))

for elim≤L . Notice how the computation rules for elim≤L are well-typed because of
the computation rules for elimSortedList.

Now, suppose that we want to define a function insert ∶ SortedList → N →
SortedList which inserts a number m into its appropriate place in a sorted list ` to
create a new sorted list. From a high-level perspective, this is easy: the elimination
rules allows us to make case distinctions between empty and non-empty lists, so it
suffices to handle these two cases separately. The empty list is easy to handle, and
for non-empty lists, we compare m with the first element n of the list ` = [n, . . .],
which is possible since ≤ on natural numbers is decidable. If m ≤ n, the result
should be [m,n, . . .], otherwise we recursively insert m into the tail of the list.

20 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

In detail, we choose P (`) = N→ SortedList and, in our first attempt, we choose
Q(n, `, p, ̃̀) = 1, since we are only interested in getting a function elimSortedList(. . .) ∶
SortedList → N → SortedList. We need to give functions stepnil ∶ (m ∶ N) →
SortedList and stepcons(n, `, p) ∶ (̃̀ ∶ N → SortedList) → Q(n, `, p, ̃̀) → (m ∶
N) → SortedList to use when inserting into the empty list or the list cons(n, `, p)
respectively. The argument ̃̀∶ N→ SortedList gives the result of a recursive call on
`.

The function stepnil is easy to define: it should be

stepnil(m) = cons(m,nil, trivm)

For stepcons, the decidability of ≤ (combined with the fact that ≤ is total) allows us
to distinguish between the cases when m ≤ n and n ≤ m, and we are entitled to a
proof q ∶m ≤ n or q ∶ n ≤m of this fact. We try:

stepcons(n, `, p, ̃̀,⋆,m)

=
⎧⎪⎪⎨⎪⎪⎩

cons(m, cons(n, `, p),≪ q, tra≤L(q, p) ≫) where q ∶m ≤ n
cons(n, ̃̀(m), {?}) where q ∶ n ≤m

Here, tra≤L ∶m ≤ n→ n ≤L `→m ≤L ` witnesses a kind of transitivity of ≤ and ≤L.
It can be straightforwardly defined with the elimination rules. The question is what
we should fill the hole {?} with. We need to provide a proof that n ≤L l̃(m), i.e.
that n ≤L insert(l,m) if we remember that l̃ is the result of the recursive call on `.
We need to prove this simultaneously as we define insert! Fortunately, this is exactly
what the elimination rules allow us to do if we choose a more meaningful Q.

Thus, we try again, but this time with

Q(n, `, p, ̃̀) = (m ∶ N) → n ≤m→ n ≤L l̃(m) .

The argument ⋆ ∶ 1 to stepcons in our first attempt has now been replaced with the
argument p̃ ∶ (m ∶ N) → n ≤m→ n ≤L l̃(m), and we can define

stepcons(n, `, p, ̃̀, p̃,m)

=
⎧⎪⎪⎨⎪⎪⎩

cons(m, cons(n, `, p),≪ q, tra≤L(q, p) ≫) where q ∶m ≤ n
cons(n, ̃̀(m), p̃(m,q)) where q ∶ n ≤m

Now we must also define steptriv ∶ (n ∶ N) → Q(n,nil, trivn, stepnil) and step≪⋅≫
with type as above for our choice of P and Q. This presents us with no further
difficulties. For steptriv , expanding Q(n,nil, trivn, stepnil) and replacing steptriv

with its definition, we see that we should give a function of type

steptriv ∶ (n ∶ N) → (m ∶ N) → n ≤m→ n ≤L cons(m,nil, trivm) ,

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 21

so we can define steptriv(n,m, p) = ≪ p, trivn ≫. The definition of step≪⋅≫
follows the pattern of stepcons above. Rather than trying to explain it, we just give
the definition:

step≪⋅≫(m,n, `, p, q, p′, ̃̀, p̃, p̃′, x, r) =
⎧⎪⎪⎨⎪⎪⎩

≪ r,≪ q, p′ ≫≫ where s ∶m ≤ n
≪ q, p̃′(x, r) ≫ where s ∶ n ≤m

With all pieces in place, we can now define insert ∶ SortedList→ N→ SortedList as
insert = elimSortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫). ∎

3.3 The examples revisited

We show how to find γA, γB for some well-known sets, including the examples in
Section 1.1.

3.3.1 Encoding multiple constructors into one

The theory we have presented assumes that both A and B have exactly one construc-
tor each. This is no limitation, as multiple constructors can always be encoded into
one by using non-inductive arguments. Suppose that intro0 ∶ F0(A,B) → A and
intro1 ∶ F1(A,B) → A are two constructors for A. Then we can combine them into
one constructor

intro0+1 ∶ ((i ∶ 2) × Fi(A,B)) → A

by defining intro0+1(i, x) = introi(x).
If intro0 is described by the code γ0 and intro1 by γ1, then intro0+1 is described

by the code

γ0 +SP γ1 := non-ind(2, λx.if x then γ0 else γ1) .

3.3.2 Examples of codes for inductive-inductive definitions

Well-orderings Ordinary inductive definitions can be interpreted as inductive-in-
ductive definitions where we only care about the index set A and not about
the family B ∶ A → Set. A canonical choice is to let B have construc-
tor introB ∶ (x ∶ A) → B(x), which is described by the code γdummy :=
A-ind(1,nil(aref(inr(⋆))))7.

For every A ∶ Set, B ∶ A→ Set, let

γW (A,B) := non-ind(A,λx .A-ind(B(x),nil))
7Another choice is γdummy = non-ind(0, !SP0

B
(γA)), which makes B(x) an empty type.

22 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

and define W (A,B) := AγW (A,B),γdummy . Then W (A,B) has constructor

introW (A,B) ∶ ((x ∶ A) × (B(x) →W (A,B)) × 1) →W (A,B) .

Finite sets Also indexed inductive definitions can be interpreted as inductive-
inductive definitions, namely those where the index set just is an isomorphic
copy of a previously constructed set (i.e. with constructor introA ∶ I → A for
some I ∶ Set).

For the family Fin ∶ N→ Set of finite sets, the index set is N, so we define

γA := non-ind(N, λn .nil) ∶ SP0
A

and
γFin := γz +SP γs ∶ SP0

B(γA)

where

γz := non-ind(N, λn .nil(arg(⟨n + 1,⋆⟩))) ,

γs := non-ind(N, λn .B-ind(1, (λ ⋆ .arg(⟨n,⋆⟩)),nil(arg(⟨n + 1,⋆⟩)))) .

Then the constructor introAγA,γFin ∶ N × 1→ AγA,γFin is one part of an isomor-
phism N ≅ N × 1 ≅ AγA,γFin , and if we define Fin ∶ N→ Set by

Fin(n) = BγA,γFin(introAγA,γFin (⟨n,⋆⟩)) ,

then we can define constructors

n ∶ N
zn ∶ Fin(n + 1)

n ∶ N m ∶ Fin(n)
sn(m) ∶ Fin(n + 1)

by zn = introBγA,γFin (⟨tt, ⟨n,⋆⟩⟩) and

sn(m) = introBγA,γFin (⟨ff, ⟨n, ⟨(λ ⋆ .m),⋆⟩⟩⟩ .

Contexts and types The codes for the contexts and types from Example 1 are as
follows:

γCtxt = nil +SP A-ind(1,B-ind(1, (λ ⋆ . inr(⋆)),nil)) ∶ SP0
A

γι = A-ind(1,nil(aref(inr(⋆))))
γΠ = A-ind(1,B-ind(1, (λ ⋆ . aref(inr(⋆))),B-ind(1,

(λ ⋆ .arg(⟨ff, ⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩⟩),
nil(aref(inr(⋆))))))

γTy = γι +SP γΠ ∶ SP0
B(γCtxt) .

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 23

We have Ctxt = AγCtxt,γTy and Ty = BγCtxt,γTy and we can define the usual
constructors by

ε ∶ Ctxt ι ∶ (Γ ∶ Ctxt) → Ty(Γ)
ε = introAγCtxt,γTy (⟨tt,⋆⟩) , ιΓ = introBγCtxt,γTy (⟨tt, ⟨(λ ⋆ .Γ),⋆⟩⟩) ,

▷ ∶ (Γ ∶ Ctxt) → Ty(Γ) → Ctxt
Γ▷ σ = introAγCtxt,γTy (⟨ff, ⟨(λ ⋆ .Γ), ⟨(λ ⋆ .σ),⋆⟩⟩⟩) ,

Π ∶ (Γ ∶ Ctxt) → (σ ∶ Ty(Γ)) → Ty(Γ▷ σ) → Ty(Γ)
Π(Γ, σ, τ) = introBγCtxt,γTy (⟨ff, ⟨(λ ⋆ .Γ), ⟨(λ ⋆ .σ), ⟨(λ ⋆ .τ),⋆⟩⟩⟩⟩) .

4 A set-theoretic model

Even though SPA and SPB themselves are straightforward (large) inductive defini-
tions, this axiomatisation does not reduce inductive-inductive definitions to indexed
inductive definitions, since the formation and introduction rules are not instances of
ordinary indexed inductive definitions. (However, we do believe that the theory of
inductive-inductive definitions can be reduced to the theory of indexed inductive
definitions with a bit of more work, and plan to do this in the future.) To make sure
that our theory is consistent, it is thus necessary to construct a model.

We will develop a model in ZFC set theory, extended by two inaccessible
cardinals in order to interpret Set and Type. Our model will be a simpler version of
the models developed by Dybjer and Setzer [DS99, DS06] for induction-recursion.
See Aczel [Acz99] for a more detailed treatment of interpreting type theory in set
theory.

4.1 Preliminaries

We will be working informally in ZFC extended with the existence of two strongly
inaccessible cardinals i0 < i1, and will be using standard set theoretic constructions,
e.g.

⟨a, b⟩ := {{a},{a, b}} ,

λx ∈ a.b(x) := {⟨x, b(x)⟩ ∣x ∈ a} ,

Πx∈ab(x) := {f ∶ a→ ⋃
x∈a

b(x) ∣ ∀x ∈ a.f(x) ∈ b(x)} ,

Σx∈ab(x) := {⟨c, d⟩ ∣ c ∈ a ∧ d ∈ b(c)} ,

0 := ∅,1 := {0},2 := {0,1} ,

24 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

a0 + . . . + an := Σi∈{0,...,n}ai

and the cumulative hierarchy Vα := ⋃
β<α

P(Vβ). Whenever we introduce sets Aα

indexed by ordinals α, let
A<α := ⋃

β<α

Aβ .

For every expression A of our type theory, we will give an interpretation JAKρ,
regardless of whether A ∶ Type or A ∶ B or not. Interpretations might however be
undefined, written JAKρ ↑. If JAKρ is defined, we write JAKρ ↓. We write A ≃ B for
partial equality, i.e. A ≃ B if and only if A ↓⇔ B ↓ and if A ↓, then A = B. We
write A ∶≃ B if we define A such that A ≃ B.

Open terms will be interpreted relative to an environment ρ, i.e. a function
mapping variables to terms. Write ρ[x↦a] for the environment ρ extended with
x ↦ a, i.e. ρ[x↦a](y) = a if y = x and ρ(y) otherwise. The interpretation JtKρ of
closed terms t will not depend on the environment, and we omit the subscript ρ.

4.2 Interpretation of Expressions

The interpretation of the logical framework is as in [DS99]:

JSetK ∶≃ Vi0 JTypeK ∶≃ Vi1
J(x ∶ A) → BKρ ∶≃ Πy∈JAKρJBKρ[y↦x] Jλx ∶ A.eKρ ∶≃ λy ∈ JAKρ.JeKρ[y↦x]

J(x ∶ A) ×BKρ ∶≃ Σy∈JAKρJBKρ[y↦x] J⟨a, b⟩Kρ ∶≃ ⟨JaKρ, JbKρ⟩
J0K ∶≃ 0 J1K ∶≃ 1 J2K ∶≃ 2 J⋆K ∶≃ 0 JttK ∶≃ 0 JffK ∶≃ 1

Jif x then a else bKρ ∶≃

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JaKρ if JxKρ = 0

JbKρ if JxKρ = 1

undefined otherwise

J!AKρ ∶≃ ∅ (the unique inclusion ∅ → JAKρ)

To interpret terms containing SPA, SPB, ArgA, ArgB, IndexB, and the codes nil,
non-ind, A-ind and B-ind, we first define JSPAK, JSPBK, JArgAK, JnilK, Jnon-indK,
. . . and interpret

JSPA(Xref)Kρ := JSPAK(JXrefKρ)
⋮

JArgA(Xref , γ,X,Y, repX)Kρ := JArgAK(JXrefKρ, JγKρ, JXKρ, JY Kρ, JrepXKρ)
⋮

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 25

Jnon-ind(K,γ)Kρ := Jnon-indK(JKKρ, JγKρ)
⋮ etc.

In all future definitions, if we are currently defining JF Kρ where F ∶D → E, say, let
JF Kρ(d) ↑ if d ∉ JDKρ.

JSPAK(Xref) is defined as the least set such that

JSPAK(Xref) = 1 + ∑
K∈JSetK

(K → JSPAK(Xref)) + ∑
K∈JSetK

JSPAK(Xref +K)

+ ∑
K∈JSetK

∑
h∶K→Xref

JSPAK(Xref) .

The constructors are then interpreted as

JnilK ∶≃ ⟨0,0⟩ JB-indK(K,h, γ) ∶≃ ⟨3, ⟨K, ⟨h, γ⟩⟩⟩
Jnon-indK(K,γ) := ⟨1, ⟨K,γ⟩⟩ JA-indK(K,γ) ∶≃ ⟨2, ⟨K,γ⟩⟩

JSPBK and its constructors are defined analogously. The functions JArgAK, JArgBK
and JIndexBK are defined according to their equations, e.g.

JArgAK(Xref , JnilK,X,Y, repX) ∶≃ 1

JArgAK(Xref , Jnon-indK(K,γ),X,Y, repX) ∶≃ ∑
k∈K

JArgAK(Xref , γ(k),X,Y, repX)

JArgAK(Xref , JA-indK(K,γ),X,Y, repX) ∶≃ ∑
j∶K→A

JArgAK(Xref +K,γ,X,Y, [repX, j])

JArgAK(Xref , JB-indK(K,h, γ),X,Y, repX) ∶≃ ∑
j∈Πk∈KB(repX(h(k)))

JArgAK(Xref , γ,X,Y, repX).

Finally, we have to interpret AγA,γB , BγA,γB , introAγA,γB and introBγA,γB . The
high-level idea is to iterate Arg0

A until a fixed point is reached, then apply Arg0
B

once, and repeat. This is necessary since Arg0
B expects an argument introA ∶

Arg0
A(γA,A,B) → A, which can be chosen to be the identity if A is a fixed point of

Arg0
A(γA,A,B) (with B fixed). In more detail, let

JAγA,γBK ∶≃ Ai0 , JBγA,γBK(a) ∶≃ Bi0(a) ,
JintroAγA,γB K(a) ∶≃ a , JintroBγA,γB K(b) ∶≃ b ,

where Aα and Bα are simultaneously defined by recursion on α as

Aα := least fixed point containing A<α of λX . JArg0
AK(γA,X,B<α) ,

Bα(a) := {b ∣ b ∈ JArg0
BK(γA,Aα,B<α, id, γB)

∧ JIndex0
BK(γA,Aα,B<α, id, γB , b) = a} .

26 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

The (graph of the) eliminators can then be built up in the same stages.
Having interpreted all terms, we finally interpret contexts as sets of environ-

ments:

J∅K ∶≃ ∅ JΓ, x ∶ AK ∶≃ {ρ[x↦a] ∣ ρ ∈ JΓK ∧ a ∈ JAKρ}.

4.3 Soundness of the Rules

A detailed verification of the soundness of all the rules falls outside the scope of this
paper. The main difficulty lies in proving that JSPAK and JSPBK are well-defined,
and that JAγA,γB K ∈ JSetK and JBγA,γB K ∶ JAγA,γB K → JSetK. Full details of the
proof will be provided in a future publication (in preparation).

JSPAK is obtained by iterating the appropriate operator Γ ∶ (JSetK→ JSetK) →
(JSetK → JSetK) up to i0 times. Since Xref ∈ JSetK, we have (Xref +K), (K →
Xref) ∈ JSetK for all K ∈ JSetK = Vi0 by the inaccessibility of i0. Hence all
“premisses” have cardinality at most i0, which is regular, so that the operator has
a fixed point after i0 iterations, which must be an element of JTypeK = Vi1 by the
inaccessibility of i1.

To see that JAγA,γB K ∈ JSetK and JBγA,γB K ∶ JAγA,γB K → JSetK, one first
verifies that JArg0

AK, JArg0
BK, JIndex0

BK are monotone in the following sense:

Lemma 12. For all γA ∈ JSP0
AK and γB ∈ JSP0

BK(γA):

(i) If A ⊆ A′ and B(x) ⊆ B′(x) then JArg0
AK(γA,A,B) ⊆ JArg0

AK(γA,A
′,B′).

(ii) If in addition introA(x) = intro′A(x) for all x ∈ Arg0
A(γA,A,B), then

JArg0
BK(γA,A,B, introA, γB) ⊆ JArg0

BK(γA,A
′,B′, intro′A, γB)

and

JIndex0
BK(γA,A,B, introA, γB, x) = JIndex0

BK(γA,A
′,B′, intro′A, γB, x)

for all x ∈ JArg0
BK(γA,A,B, introA, γB). ◻

We can then adapt the standard results [Acz77] about monotone operators. First,
we note that one application of JArg0

AK and JArg0
BK is not enough to take us outside

of JSetK:

Lemma 13. For all γA ∈ JSP0
AK and γB ∈ JSP0

BK(γA):

(i) If X ∈ JSetK and Y (x) ∈ JSetK for each x ∈ X , then JArg0
AK(γA,X,Y) ∈

JSetK.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 27

(ii) IfX ∈ JSetK and Y (x) ∈ JSetK for each x ∈X , JArg0
BK(γA,X,Y, introX , γB) ∈

JSetK. ◻

We then iterate, using Aα and Bα, in order to reach a fixed point. This uses that
fact that both JArg0

AK and JArg0
BK are κ-continuous for large enough κ:

Lemma 14.

(i) For α < i0, Aα ∈ JSetK and Bα ∶ Aα → JSetK.

(ii) For α < β, Aα ⊆ Aβ and Bα(a) ⊆ Bβ(a) for all a ∈ Aα.

(iii) There is κ < i0 such that for all α ≥ κ, Aα = Aκ and Bα(a) = Bκ(a) for all
a ∈ Aα. ◻

Now we are done, since JAγA,γB K = Ai0 = Aκ ∈ JSetK, and similarly for
JBγA,γB K.

References

[AAG05] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers:
Constructing strictly positive types. Theoretical Computer Science,
342(1):3 – 27, 2005.

[Acz77] Peter Aczel. An introduction to inductive definitions. In Handbook of
Mathematical Logic, pages 739–782. Elsevier, 1977.

[Acz99] Peter Aczel. On relating type theories and set theories. Lecture Notes
In Computer Science, 1657:1–18, 1999.

[AM09] Thorsten Altenkirch and Peter Morris. Indexed containers. In Logic
In Computer Science, pages 277 –285, 2009.

[AMNFS11] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and
Anton Setzer. A categorical semantics for inductive-inductive defini-
tions. In Andrea Corradini, Bartek Klin, and Corina Cirstea, editors,
Conference on Algebra and Coalgebra in Computer Science, volume
6859 of Lecture Notes in Computer Science, pages 70 – 84. Springer,
2011.

[Bac88] Roland Backhouse. On the meaning and construction of the rules
in Martin-Löf’s theory of types. In A. Avron, R. Harper, F. Honsell,
I. Mason, and G. Plotkin, editors, Proceedings of the Workshop on
general logic, Edinburgh, February, 1987, volume ECS-LFCS-88-52,
1988.

28 FREDRIK NORDVALL FORSBERG AND ANTON SETZER

[BCMS89] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman.
Do-it-yourself type theory. Formal Aspects of Computing, 1(1):19–84,
1989.

[CDMM10] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter
Morris. The gentle art of levitation. In ICFP, volume 45, pages 3–14.
ACM, 2010.

[Cha09] James Chapman. Type theory should eat itself. Electronic Notes in
Theoretical Computer Science, 228:21–36, 2009.

[Con01] John Conway. On numbers and games. AK Peters, 2001.

[Coq12] The Coq team. Coq. http://coq.inria.fr/, 2012.

[Dan07] Nils Anders Danielsson. A formalisation of a dependently typed
language as an inductive-recursive family. Lecture Notes in Computer
Science, 4502:93–109, 2007.

[DS99] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-
recursive definitions. In Typed lambda calculi and applications: 4th
international conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999:
proceedings, pages 129–146. Springer Verlag, 1999.

[DS03] Peter Dybjer and Anton Setzer. Induction–recursion and initial alge-
bras. Annals of Pure and Applied Logic, 124(1-3):1–47, 2003.

[DS06] Peter Dybjer and Anton Setzer. Indexed induction–recursion. Journal
of logic and algebraic programming, 66(1):1–49, 2006.

[Dyb94] Peter Dybjer. Inductive families. Formal aspects of computing,
6(4):440–465, 1994.

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theory. Journal of Symbolic Logic,
65(2):525–549, 2000.

[GH12] Neil Ghani and Peter Hancock. Containers, monads and induction
recursion. To appear in MSCS, 2012.

[MAG09] Peter Morris, Thorsten Altenkirch, and Neil Ghani. A universe of
strictly positive families. International Journal of Foundations of
Computer Science, 20(1):83–107, 2009.

A FINITE AXIOMATISATION OF INDUCTIVE-INDUCTIVE DEFINITIONS 29

[Mam06a] Lionel Mamane. Surreal numbers in Coq. In Jean-Christophe Fillitre,
Christine Paulin-Mohring, and Benjamin Werner, editors, Types for
Proofs and Programs: International Workshop TYPES 2004, volume
3839 of Lecture Notes in Computer Science, pages 170 – 185. Springer,
2006.

[MAM06b] Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring
the regular tree types. Types for Proofs and Programs, pages 252–267,
2006.

[ML84] Per Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, 1984.

[Mor07] Peter Morris. Constructing Universes for Generic Programming. PhD
thesis, University of Nottingham, 2007.

[NFS10] Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive
definitions. In Anuj Dawar and Helmut Veith, editors, Computer
Science Logic, volume 6247 of Lecture Notes in Computer Science,
pages 454–468. Springer, 2010.

[Nor07] Ulf Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Science
and Engineering, Chalmers University of Technology, 2007.

	Introduction
	Examples of inductive-inductive definitions
	Inductive-inductive definitions versus inductive-recursive definitions

	Type-theoretical preliminaries
	A finite axiomatisation
	Dissecting an inductive-inductive definition
	The axiomatisation
	The universe SP0A of descriptions of A
	Towards descriptions of B
	The universe SP0B of descriptions of B
	Formation and introduction rules
	Elimination rules by example

	The examples revisited
	Encoding multiple constructors into one
	Examples of codes for inductive-inductive definitions

	A set-theoretic model
	Preliminaries
	Interpretation of Expressions
	Soundness of the Rules

