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Abstract

Compositional Game Theory is a new, recently introduced model of economic
games based upon the computer science idea of compositionality. In it,
complex and irregular games can be built up from smaller and simpler games,
and the equilibria of these complex games can be defined recursively from
the equilibria of their simpler subgames. This paper extends the model by
providing a final coalgebra semantics for infinite games. In the course of this,
we introduce a new operator on games to model the economic concept of
subgame perfection.

Keywords: Compositional game theory; Final coalgebra semantics; Infinite
iterated games; subgame perfection.

As one of Don’s PhD students, I have always admired Don’s commitment to (i)
fundamental research which would stand the test of time; (ii) taking seriously
the real-world problems that inspire research; and (iii) the power of categorical
tools for devising compositional techniques for treating complex phenomena. It
is therefore a great pleasure to dedicate this work to him, as it embodies exactly
these qualities: using category theory to devise a compositional treatment of
infinite games that occur in economic modelling. Additionally, Don showed
me great kindness and support throughout my career, e.g. by funding part of
my post-doc even though my research was not directly related to his. This
selfless support for future generations is something I am extremely grateful
for, and have tried to replicate in my own dealings with younger academics.

Professor Neil Ghani

1. Introduction

Compositionality, where one sees complex systems as being built from
smaller subsystems, is widely regarded within computer science as a key
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enabling technique for scalability. Since the subsystems are smaller, they are
easier to reason about, and compositionality also promotes modularity and
reuse; a particular system can be a subsystem of many different supersystems.
Can compositionality be applied also to economic games? In general, not
all reasoning is compositional, especially if significant emergent behaviour is
present in a large system but not in its subsystems. This is unfortunately
the case for economic games. For example, if σ is an optimal strategy for
a game G, then is σ part of an optimal strategy for G ∗ H, where G ∗ H is
a super-game built from G and H? Clearly not, e.g. the Iterated Prisoner’s
Dilemma has equilibria — such as cooperative equilibria — that do not arise
from repeatedly playing the Nash equilibrium from the Prisoner’s Dilemma
(Axelrod and Dion, 1988).

However, Ghani et al. (2018) produced a compositional model of game
theory which included a limited set of operators for building new games from
old. One shortcoming was that this did not treat the infinite iteration of
games, or more generally contain an operator to compositionally build infinite
iterations of games. This paper addresses that problem. Within programming
language theory, these sort of issues are tackled by final coalgebra semantics
(Rutten and Turi, 1994) and we follow this practice, with the added benefit
of bringing related bisimulation techniques to the game theory community.
We highlight two relationships between our work and traditional approaches:

• Each round of an infinite game produces utility. Traditionally, this
infinite sequence of staged utilities is combined into a single utility in
one of a number of ad hoc manners. We take the bolder approach of
not requiring the choice of a single mechanism for combining utilities.

• The coalgebraic approach we advocate dovetails well with the economic
concept of subgame perfection, where a strategy must be an optimal
response in all subgames of the supergame (Shubik, 1984).

The general approach of Compositional Game Theory deals with a new
concept of coutility. However this paper makes the simplifying assumption
that the coutility function is the identity. Despite this, our approach covers
many games, as those occurring in the traditional literature do not possess
coutility.

Related Work. An introduction to the economic treatment of iterated games
can be found in Mailath and Samuelson (2006). The fundamental concept of
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game theory is that of Nash equilibrium (Nash, 1951), which has been adapted
for the study of repeated and dynamic games to the concept of subgame
perfect equilibrium first introduced by Selten (1965). Significantly influential
work on using logical methods and coalgebraic reasoning in economics include
Lescanne (2012) and Abramsky and Winschel (2017). Open games are also
closely related to the ‘partially defined games’ of Oliva and Powell (2015).

Structure of the paper. Section 2 consists of preliminaries and a summary of
previous work on open games; Section 3 introduces an operator for dealing
with subgame perfection; Section 4 introduces morphisms between games,
and Section 5 consists of our final coalgebra semantics for infinite open games.
In Section 6, we show how bisimulation and coinduction can be used to
reason about infinitely repeated games. Finally Section 7 contains concluding
remarks and discussions of further work.

2. Preliminaries

The key concept of Ghani et al. (2018) is the following:

Definition 1 (Open Game). Let X, Y , R and S be sets. An open game
G = (ΣG, PG, CG, EG) : (X,S)→ (Y,R) consists of:

• a set ΣG, called the set of strategy profiles of G,

• a function PG : ΣG ×X → Y , called the play function of G,

• a function CG : ΣG ×X ×R→ S, called the coutility function of G, and

• a function EG : X × (Y → R)→PΣG, called the equilibrium function
of G.

We sometimes write G : (X,S)
Σ−→ (Y,R) to make the set of strategies explicit.

Intuitively, the set X contains the possible states or histories of the game,
Y the moves, R the utilities and S the coutilities. The set ΣG contains the
strategies we are trying to pick an optimal one from. The play function PG
selects a move given a strategy and a state, while the coutility function CG
chooses the coutility to extrude from the game, given a strategy, state and
utility. Finally, if σ ∈ EG x k, then σ is an optimal strategy in state x and
with utility given by k : Y → R. Permitting arbitrary equilibrium functions,
as opposed to only considering fixed ones, is one of the key steps for achieving
compositionality.
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Player 1

Player 2
C D

C −1,−1 −5, 0
D 0,−5 −3,−3

Figure 1: Payoff matrix for the Prisoner’s Dilemma.

Example 2. In the Prisoner’s Dilemma, two suspects in a major crime are
held in separate cells. Each of them can be convicted of a minor offence, but
unless one of them acts as an informer against the other, there is not enough
evidence for a major conviction. Each prisoner must decide to either cooperate
with the other prisoner and stay quiet, or to defect and betray the other. If
both stay quiet, each will spend one year in prison, while if one and only one
defects, she will walk away free and be used as a witness against the other
prisoner, who will spend five years in prison. However if they both defect,
they will each spend three years in prison. The situation is summarised in
Figure 1. The Prisoner’s Dilemma is represented as an open game

PD : (1,R× R)→ ({C,D} × {C,D},R× R)

as follows: The history of the game is trivial (so X = 1, a singleton set), and
the moves of the game consists of a choice to cooperate or defect for each
player (so Y = {C,D} × {C,D}). Both utility and coutility is represented
by the number of years lost in prison for each player (so R = S = R× R). A
strategy simply consists of choosing a move, so ΣPD = {C,D}×{C,D}, with
play function PPD(x,m) = m. Coutility is given by CPD(m,x, r) = r, while

(m1,m2) ∈ EPD(x, k)⇔ m1 ∈ arg max(π1 ◦ k(−,m2)) and

m2 ∈ arg max(π2 ◦ k(m1,−))

We see that (m1,m2) ∈ EPD(x, k) exactly when (m1,m2) is a Nash equilibrium.
No particular utility function is hardcoded into this game; we get the concrete
Prisoner’s Dilemma by specialising to the utility function k corresponding to
the payoff matrix in Figure 1, in which case (D,D) is the only equilibrium.

The main result of Ghani et al. (2018) can be stated as follows:

Theorem 3. The collection of pairs of sets, with open games G : (X,S)→
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(Y,R) as morphisms, forms a symmetric monoidal category Open.1

Proof. The composition of G and H is given by the game with strategies
ΣH◦G = ΣG × ΣH, play function the composition of the respective play
functions from H and G, and coutility function the composition in reverse of
the coutility functions from H and G, using the play function of G to produce
a state for H. Finally (σ1, σ2) ∈ EH◦G x k if and only if σ1 ∈ EG x k′, where
k′ y = CH σ2 y (k (PH σ2 y)), and σ2 ∈ EH (PG σ1 x) k.

The monoidal product is given by Cartesian product in the category
of sets, with componentwise action on the strategies, play functions and
coutility functions of open games, and (σ1, σ2) ∈ EG⊗H (x1, x2) k if and only
if σ1 ∈ EG x1 ((π1 ◦ k)( , PH σ2 x2)) and σ2 ∈ EH x2 ((π2 ◦ k)(PG σ1 x1, )). The
unit of this monoidal structure is (1,1), while the symmetry is inherited from
the Cartesian product in Set.

Returning to the Prisoner’s Dilemma, we see that it can be composed
from simpler games as follows:

Example 4. The Prisoner’s Dilemma game PD : (1,R × R) → ({C,D} ×
{C,D},R× R) from Example 2 arises as

PD = G ⊗ G

where G : (1,R)
{C,D}−−−→ ({C,D},R) is the game with play function PG(x,m) =

m, coutility function CG(x,m, r) = r and equilibrium function EG(x, k) =
arg max k. We can further hardwire a specific utility function k by creating
a closed game Uk ◦ PD : (1,R × R) → (1,1) by composing PD with the

game Uk : ({C,D} × {C,D},R × R)
1−→ (1,1), where Uk has trivial play

function, coutility function CUk(m, y, x) = k(y), and every strategy is an
equilibrium. It is not hard to see that (m1,m2) ∈ EPD(x, k) if and only
if (m1,m2) ∈ EUk◦PD(x, !), where ! : 1 → 1 is the unique function into 1.
However, we prefer to work with open games without specified utility functions
whenever possible, so that we can compose them into larger games as needed.

1Actually, one needs to quotient by the equivalence relation induced by isomorphism of
strategies, but we simplify presentation here by dealing with representatives directly.
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3. Subgame Perfection and Conditioning

Intuitively, we play two rounds of a game by composing the game with
itself. However, this is not quite right: in the composite game ΣH◦G = ΣH×ΣG ,
and thus the second game H cannot react to the moves played by the first
game G. This clearly does not match practice as any later play should be
able to react differently to different previous plays. Further, an optimal
strategy should react optimally to all previous plays, even if those previous
plays are sub-optimal. In the game-theoretic literature, this is known as
subgame perfection (see also Abramsky and Winschel (2017) for a coalgebraic
treatment). Rather than introduce a new form of composition, we introduce
a new operator A→ (−) for conditioning a game to react to every possibility
in some set A.

Definition 5. Let A be a set. Given a game H : (X, S)
Σ−→ (Y,R), we define

the game A→ H : (A×X, S)
A→Σ−−−→ (A× Y, R) with

• play function PA→H (a, x) (f : A→ ΣH) = (a, PH x (fa))

• coutility function CA→H (a, x) f r = CH x (fa) r

• equilibrium function

f ∈ EA→H(a, x) (k : A× Y → R) iff (∀a′ ∈ A) fa′ ∈ EH x k(a′, )

Note how the description of subgame perfection in the previous paragraph
is reflected mathematically by requiring a strategy in A→ H to be a set of
strategies, one for each element of A, and that for a strategy f to be optimal
in A→ H, each of its components must be optimal in H. Clearly we have:

Lemma 6. The mappings (X,S) 7→ (A×X,S) and H 7→ (A→ H) define a
functor A→ (−) : Open→ Open.

This functor is not only of interest for infinite iterations of games, but
more generally allows any game to observe information and react accordingly.

4. 2-Cells and Coutility-Free Games

Given a game G : (X,S)
Σ−→ (Y,R), we will construct its infinite iteration

Gω compositionally as the final coalgebra of the functor FG(H) := (Y → H)◦G.
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However, this means that games will acquire universal properties and thus
we need a notion of morphism between games. Further, Gω will satisfy
Gω ∼= (Y → Gω) ◦ G, and hence the equation

CGω x σ r = CG x σ0 (CGω x
′ σ1 r)

relating the coutilities of Gω and G must hold. Here, the strategy σ for Gω
decomposes into σ0 for the first round and σ1 for later rounds, and x′ is
the state after completing the first round. This equation does not always
have a unique solution — e.g. if CG x σ r = r. To recover uniqueness, we
restrict to games G where CG x σ r = r in this paper. This is not a severe
restriction, as there is no coutility in traditional game theory. We will also
only consider state-free games. We are currently working on removing both
these restrictions. Next, for FG(H) to type check, the utility and coutility
sets of G must be the same, and thus we only consider games whose utility
and coutility is a fixed set R. To summarise: in this paper we consider games

G : (1, R)
Σ−→ (Y,R) with state 1, utility and coutility the set R, and coutility

function CG σ r = r. We define morphisms between such games as follows:

Definition 7. Let R be a set. Given two games G : (1, R)
Σ−→ (Y,R) and

G ′ : (1, R)
Σ′−→ (Y ′, R), a morphism α : G → G ′ consists of a pair of functions

α = (αY : Y → Y ′, αΣ : Σ→ Σ′) such that

(i) αY (P σ) = P ′ (αΣ σ), and

(ii) for every σ ∈ Σ and k : Y ′ → R, if σ ∈ E (k ◦ αY ) then αΣ(σ) ∈ E ′ k.

We trust the reader will not be confused by the fact that games are
morphisms in Open but also have morphisms between them — this simply
reflects inherent 2-categorical structure. The category whose objects are

open games G : (1, R)
Σ−→ (Y,R) for some Σ, Y (and a fixed R), and whose

morphisms are the morphisms between such open games is denoted 2OpenR.
We are now in position to define the functor FG : 2OpenR → 2OpenR whose
final coalgebra will be the infinite iteration of the game G.

Theorem 8. Let R be a set and G : (1, R)
Σ−→ (Y,R). The mapping FG(H) =

(Y → H) ◦ G extends to a functor FG : 2OpenR → 2OpenR.
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Proof. Given a morphism α : H → H′, define FG(α) : FG(H)→ FG(H′) by

(FG(α))Σ (σ, f) = (σ, αΣ ◦ f) (FG(α))Y (y, z) = (y, αY z)

The play function and equilibrium preservation conditions are easily checked.

5. The iterated game as a final coalgebra

From now on, let R be an arbitrary set, used as utility and coutility for
all our games, and write 2Open for 2OpenR.

5.1. Definition of the iterated game

Let us fix an arbitrary open game G : (1, R)
Σ−→ (Y,R) that we want to iter-

ate infinitely often via the final coalgebra of the functor FG : 2Open → 2Open

from the previous section, mapping H : (1, R)
ΣH−−→ (YH, R) to (Y → H) ◦ G :

(1, R)
Σ×(Y→ΣH)−−−−−−−→ (Y × YH, R). We first describe FG-coalgebras, then our

candidate Gω for the final FG-coalgebra, and conclude with a proof that Gω
really is final. As a first step we need to recall two endofunctors on the
category of sets, and their final coalgebras.

Fact 9. Given two sets I and O we let D(I, O) : Set → Set be the functor
given by D(I, O)X := O × XI and by D(I, O)(f : X → Y ) := idO × f I .
Furthermore, for a set Y , we define the functor S(Y ) : Set→ Set by putting
S(Y )X = Y × X and S(Y )(f : X → Y ) := idY × f . The final D(I, O)-
coalgebra is

(I∗ → O)
〈now,ltr〉 // O × (I∗ → O)I

where I∗ is the set of finite words over I, and now(f) := f(ε) and ltr(f) =
λi.λw.f(iw) (cf. Rutten (2000, Ex. 9.5)2). The final S(Y )-coalgebra is

Y ω 〈hd,tl〉 // Y × Y ω

where Y ω is the set of infinite streams over Y , hd(y0y1 . . . ) := y0, i.e., hd
maps a stream to its first element (its “head”) and tl(y0y1y2 . . . ) := y1y2 . . . ,
i.e., tl maps a stream to its tail (cf. Rutten (2000, Ex. 9.4)).

2Loc.cit. proves this for I = 2 but the argument can be easily adapted for arbitrary I.
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The above final coalgebras are fundamental for our representation of
iterated games: The final S(Y )-coalgebra consists of all infinite sequences of
moves of the one-round game, while the final D(Y,Σ)-coalgebra represents
the set of strategies that map lists of moves — representing moves chosen
in previous rounds — to a strategy for the next round. As notation, for σ :
Y ∗ → Σ we abbreviate now(σ) to σ0, ltr(σ) to σ′, and use (::) : Y ×Y ω → Y ω

to denote the cons-operator on streams. We now define the ω-iteration of G.

Definition 10. The ω-iteration Gω : (1, R)→ (Y ω, R) of G : (1, R)→ (Y,R)
has strategies ΣGω given by ΣGω := Y ∗ → ΣG , and play function PGω given by

PGωσ = PGσ0 :: PGω(λz.σ(PGσ0 :: z))

To define the equilibrium function EGω : (Y ω → R)→PΣGω , we first define
an operator Φ : (PΣGω)(Y ω→R) → (PΣGω)(Y ω→R) by putting

σ ∈ Φ Γ k if σ0 ∈ EG(λy.k(y :: PGω(σ′y))) (1)

and ∀y′ ∈ Y. σ′y′ ∈ Γ(λz.k(y′ :: z)) (2)

Clearly (PΣGω)(Y ω→R) forms a complete lattice by lifting the complete lattice
structure of PΣGω pointwise to the function space. Furthermore, Φ is obviously
a monotone operator on that complete lattice and therefore has a smallest
and a greatest fixpoint. We define EGω to be the greatest fixpoint of Φ.

Notice that the above approach means we do not have to fix a particular
utility function Y ω → R in advance by some arbitrary form of discounting,
but rather work with all possible utility functions, allowing the user maximum
flexibility. The definition of EGω contains a coinduction principle which we
will use (i) in this section to characterise Gω as a final coalgebra; and (ii)
in Section 6 to prove properties about equilibria in Gω. The coinduction
principle is

(∀ Γ ∈ (PΣGω)(Y ω→R)) (Γ ≤ Φ(Γ) =⇒ Γ ≤ EGω)

where ≤ denotes the pointwise inclusion order on (PΣGω)(Y ω→R) given by
Γ ≤ ∆ if Γ(k) ⊆ ∆(k) for all k : Y ω → R. This principle is sound, as the
following lemma shows:

Lemma 11. Let σ ∈ ΣGω . Then
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(i) for all utility functions k : Y ω → R we have σ ∈ EGω(k) if and only if
σ ∈ Φ(EGω)(k), and

(ii) for every Γ ∈ (PΣGω)(Y ω→R), if Γ ≤ Φ(Γ) then also Γ ≤ EGω .

Proof. The first item follows since EGω is a fixpoint of Φ, the second because
it is the greatest such, thus also the greatest post-fixpoint with respect to the
order ≤.

5.2. Proof of finality

In this section we are going to show that Gω is a final coalgebra of the
functor FG = (Y → (−)) ◦ G : 2Open → 2Open. We have two things to show:

(i) Gω is an FG-coalgebra, and

(ii) for any other FG-coalgebra γ : H → FG(H), there exists a unique
FG-coalgebra morphism (unfΣ, unfY ) : H → Gω.

The first item is formulated in the following proposition, and follows
straightforwardly using Lemma 11:

Proposition 12. The ω-iteration Gω of G is an FG-coalgebra with coalgebra
map α = (〈now, ltr〉 , 〈hd, tl〉) : Gω → FG(Gω).

We are now ready to prove that Gω indeed is the final FG-coalgebra.
To this end we consider an arbitrary FG-coalgebra H with coalgebra map
(〈nowH, ltrH〉 , 〈hdH, tlH〉). We have to prove that there is a morphism
〈unfΣ, unfY 〉 : H → Gω such that the following diagram commutes:

FGH
FG(unfΣ,unfY )// FGGω

H

(〈nowH,ltrH〉,〈hdH,tlH〉)
OO

(unfΣ,unfY )
// Gω

(〈now,ltr〉,〈hd,tl〉)
OO

It is easy to see that such a FG-coalgebra morphism — if it exists — must be
unique because commutativity of the above diagram implies commutativity
of the following two diagrams in the category of sets:
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ΣG × ΣY
H
D(Y,ΣG)(unfΣ)// ΣG × ΣY

Gω

ΣH

〈nowH,ltrH〉

OO

unfΣ
// ΣGω

〈now,ltr〉
OO

Y × YH
idY ×(unfY ) // Y × Y ω

YH

〈hdH,tlH〉

OO

unfY
// Y ω

〈hd,tl〉

OO

(3)

In other words unfΣ and unfY have to be D(Y,ΣG)- and S(Y )-coalgebra
morphisms, respectively, and these are uniquely determined by the fact that
their codomains are the respective final coalgebras.

This means that to show that Gω is a final FG-coalgebra, we have to prove
that the pair of functions 〈unfΣ, unfY 〉 defined via the diagrams in (3) is a
FG-coalgebra morphism. We need several lemmas.

Lemma 13. For every σ ∈ ΣH we have unfY (PH(σ)) = PGω(unfΣ(σ)).

Proof. To see this, we define the relation

Q := {(unfY (PH(σ)), PGω(unfΣ(σ))) | σ ∈ ΣH} ⊆ Y ω × Y ω .

Using Prop. 12 and (3), it is not hard to prove that Q is a S(Y )-bisimulation,
i.e., that for each (τ1, τ2) ∈ Q we have hd(τ1) = hd(τ2) and (tl(τ1), tl(τ2)) ∈ Q.
From the coinduction principle it follows that any two streams related by Q
are equal, which implies the lemma.

We now turn to the verification of the equilibrium condition for (unfΣ, unfY ).
First we use (unfΣ, unfY ) to define an indexed predicate on ΣGω (which can
be thought of as the image of EH under (unfΣ, unfY )). This predicate will be
a post-fixpoint of Φ which will then imply the desired equilibrium condition.

Definition 14. We define an indexed predicate ÊH : (Y ω → R)→PΣGω by
putting σ ∈ ÊHk if ∃σ′ ∈ ΣH s.t. unfΣ(σ′) = σ and σ′ ∈ EH(k ◦ unfY ).

Definition 15. We define a map ( )∗ : (Y ω → R) → (Y × YH → R) by
putting k∗ = λy.λz.k(y :: unfY (z)).

Lemma 16. For k : Y ω → R and σ′ ∈ ΣH, if σ′ ∈ EH(k ◦ unfY ), then

(i) nowH(σ′) ∈ EG(λy.k∗(y, PH(ltrH(σ′)(y)))), and

(ii) for all y′ ∈ Y we have ltr(σ′)(y′) ∈ EH(λz.k∗(y′, z)).
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Proof. Suppose σ′ ∈ EH(k ◦ unfY ). Observe that k ◦ unfY = k∗ ◦ 〈hdH, tlH〉,
so this is equivalent to σ′ ∈ EH(k∗ ◦ 〈hdH, tlH〉) and — as 〈hdH, tlH〉 is a
morphism of open games — we obtain 〈nowH, ltrH〉 (σ′) ∈ EFGH(k∗). The
lemma now follows by spelling out the definition of EFGH(k∗).

We are now ready to prove the key fact that ÊH is a post-fixpoint of Φ.

Lemma 17. Let σ ∈ ΣGω be a strategy such that σ ∈ ÊHk for some k : Y ω →
R . Then σ ∈ Φ(ÊH)(k).

Proof. The assumption σ ∈ ÊHk means that there is some σ′ ∈ ΣH such that
unfΣ(σ′) = σ and σ′ ∈ EH(k ◦ unfY ). We need to verify that

(a) now(σ) ∈ EG(λy.k(y :: PGω ltr(σ)(y))), and

(b) for all y′ ∈ Y we have ltr(σ)(y′) ∈ ÊH(λz.k(y′ :: z)).

For (a), note that by the diagram for strategies in (3) we have now(σ) =
now(unfΣ(σ′)) = nowH(σ′). Using the first item of Lemma 16, we obtain

now(σ) ∈ EG(λy.k
∗(y, PH(ltrH(σ′)(y))))

= EG(λy.k(y :: unfY (PH(ltrH(σ′)(y)))))
Lemma 13

= EG(λy.k(y :: PGω(unfΣ(ltrH(σ′)(y)))))
(3)
= EG(λy.k(y :: PGω(ltr(unfΣ(σ′))(y))))

= EG(λy.k(y :: PGω(ltr(σ)(y))))

which establishes (a).
For (b), it suffices to define for each y′ ∈ Y a suitable strategy σ′y′ ∈ ΣH

such that unfΣσ
′
y′ = ltr(σ)(y′) and σ′y′ ∈ EH(λz.k(y′ :: unfY z)). We claim that

for an arbitrary y′ ∈ Y the strategy σ′y′ := ltrH(σ′)(y′) meets these conditions.
The first condition is again an easy consequence of (3) and the fact that
unfΣ(σ′) = σ. For the second condition we note that σ′y ∈ EH(λz.k∗(y′, z)) as
a consequence of σ′ ∈ EH(k ◦ unfY ) and the second item of Lemma 16. The
claim follows now from σ′y′ ∈ EH(λz.k∗(y′, z)) = EH(λz.(y′ :: unfY (z))).

We are now ready to prove the main theorem of this section.

Theorem 18. Let G : (1, R) → (Y,R) be an open game and let Gω be its
ω-iteration. Then Gω is a final FG-coalgebra.
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Proof. By our discussion at the beginning of this subsection it suffices to
show that for an arbitrary FG-coalgebra (H, (〈nowH, ltrH〉 , 〈hdH, tlH〉)) the
map (unfΣ, unfY ) consisting of the coalgebra morphisms in (3) is a morphism
of open games. Lemma 13 shows that (unfΣ, unfY ) satisfies the play function
morphism condition. For checking the equilibrium condition, consider an
arbitrary σ′ ∈ ΣH and a k : Y ω → R such that σ′ ∈ EH(k ◦ unfY ). Then
clearly we have unfΣ(σ′) ∈ ÊH(k). As ÊH is a post-fixpoint of Φ by Lemma 17,
we have ÊH(k) ⊆ EGω(k), and thus unfΣ(σ′) ∈ EGω(k) as required.

6. Using coinduction to reason about infinite games

In this section we show how the coinduction principle inherent in the
definition of the equilibrium EGω of the ω-iteration of a game G as a final
coalgebra can be used to reason about equilibria in infinite games.

We will spell out a coinductive proof of the well-known fact that the
strategy pair consisting of two grim trigger strategies is a subgame perfect
equilibrium of the Iterated Prisoner’s Dilemma for sufficiently large discount
factors (McGillivray and Smith, 2000). To this aim consider the infinite
iteration PDω of the Prisoner’s Dilemma game PD from Example 2. Recall
that the one-round game

PD : (1,R× R)
ΣPD−−→ (Y,R× R)

has ΣPD = Y = {C,D} × {C,D}, the coplay and play functions are identity
functions, and the equilibrium EPD : (Y → R× R)→ ΣPD is given by

(s0, s1) ∈ EPD(u : Y → R× R) if π0u(s0, s1) ≥ π0u(t, s1)

and π1u(s0, s1) ≥ π1u(s0, t) for all t ∈ {C,D}

Furthermore we consider the utility function uPD of the one-round Pris-
oner’s Dilemma as specified in Figure 1 on page 4. The discounted utility
for the Iterated Prisoner’s Dilemma kβIPD : Y ω → R with discount factor
β ∈ [0, 1) is then given as

kβIPD(ρ) =
∞∑
i=0

βi · uPD(ρ(i))

where ρ(i) for i ≥ 0 denotes the ith element of a stream ρ ∈ Y ω.
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A strategy in PDω is an element of the final coalgebra of the functor
D(Y,ΣPD). This can be represented as a finite automaton that reads in
sequences of moves in PD and returns the strategy for the next round of the
game (Rutten, 1998).

Definition 19. The grim trigger strategy is given by the following automaton:

qcstart qd

(C,C)

6=(C,C)

∗

where qc is the initial state, the transitions are labelled by inputs (the ∗
denotes an arbitrary letter) and the outputs are given by o(qc) = (C,C) and
o(qd) = (D,D).

We see that the grim trigger strategy stays in the ‘cooperate state’ qc
as long as both players cooperate, but moves to — and then stays forever
in — the ‘defect state’ qd as soon as one player defects. We will now prove
that this strategy is an equilibrium of PDω, if the discount factor β is large
enough. Recall that the equilibrium EPDω is defined as a greatest fixpoint of
the operator

Φ : (PΣPDω)(Y ω→R×R) → (PΣPDω)(Y ω→R×R)

via conditions (1) and (2) on page 9. Therefore we will prove our claim by
demonstrating that the grim trigger strategy is contained in a post-fixpoint
of Φ; this is sufficient by Lemma 11. To ease presentation, we introduce the
following notation:

Notation 20. Given a D(Y,ΣPD)-coalgebra 〈now, ltr〉 : X → ΣPD × XY ,
and a word w ∈ Y ∗, we put for elements x ∈ X and functions k : Y ω → R×R

x(w) := l̂tr(x)(w) : X

kw := λy.k(wy) : Y → X

Here l̂tr(x) denotes the obvious extension of ltr(x) : Y → X to words.

Intuitively x(w) is the state that is reached in an automaton when starting
at position x and reading the input word w. Likewise, kw should be thought
of as calculating the payoff under the assumption that a finite sequence of
moves w has been made already.

We now move to the definition of a post-fixpoint χβ of Φ.
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Definition 21. We define a function χβ : (Y ω → R× R)→PΣPDω by

χβ(k) :=
{
qc(w) | w ∈ Y ∗, k = (kβIPD)w

}
where qc denotes the initial state of the grim trigger strategy.

Since obviously qc ∈ χβ(kβIPD), in order to prove that the grim trigger
strategy is an equilibrium (for large enough discount factor β), i.e. qc ∈
EPDω(kβIPD), it suffices to prove the following lemma:

Lemma 22. The indexed predicate χβ as defined above is a post-fixpoint of
Φ, i.e.,

χβ(k) ⊆ Φ(χβ)(k) for all k : Y ω → R× R,

if and only if β ≥ 1
3
.

Proof. To prove this, we consider an arbitrary k : Y ω → R × R and show
that the inclusion holds. Let q ∈ χβ(k). Then by definition of χβ there is
some w ∈ Y ∗ such that q = qc(w) and k = (kβIPD)w. We need to verify the
following conditions:

1. now(qc(w)) ∈ EPD(λy.ky(PPDω(ltr(qc(w))(y)))), and

2. ∀y′ ∈ Y. ltr(qc(w))(y′) ∈ χβ(ky′).

Note that the second condition holds trivially by definition of χβ, so we only
need to check the first condition. We do this using a case distinction on qc(w).

Case qc(w) = qc In this case we have now(qc(w)) = (C,C) and it is easy

to see that w = (C,C) . . . (C,C), PPDω(qc(w(C,C))) = (C,C)ω and
PPDω(qc(wy)) = (D,D)ω for all y ∈ {(C,D), (D,C), (D,D)}.
In order to check whether now(qc(w)) ∈ EPD(λy.ky(PPDω(qc(wy)))) we
have to ensure that

π0k(C,C)((C,C)ω) ≥ π0

(
k(D,C)(D,D)ω

)
π1k(C,C)((C,C)ω) ≥ π1

(
k(C,D)(D,D)ω

)
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We use n to denote the length of the word w = (C,C) . . . (C,C) (where
n = 0 means that w is the empty word). Then

k(C,C)((C,C)ω) = (−
∞∑
i=0

βi,−
∞∑
i=0

βi)

k(C,D)((D,D)ω) = kβIPD(w(C,D)(D,D)ω)

= (−
n−1∑
i=0

βi − 3
∞∑

i=n+1

βi,−
n−1∑
i=0

βi − 5βn − 3
∞∑

i=n+1

βi)

k(D,C)((D,D)ω) = (−
n−1∑
i=0

βi − 5βn − 3
∞∑

i=n+1

βi,−
n−1∑
i=0

βi − 3
∞∑

i=n+1

βi)

Due to symmetry, the equilibrium condition amounts to the following
inequality:

−
∞∑
i=0

βi ≥ −
n−1∑
i=0

βi − 3
∞∑

i=n+1

βi

Cancelling the common history and using the formula
∑∞

i=n β
i = βn

1−β ,

we see that this holds if and only if β ≥ 1
3
.

Case qc(w) = qd The argument works analogously. We now have (qd(w)) =

(D,D) for all histories w and that PPDω((qd(wy))) = (D,D)ω for all
y ∈ Y .

To check that qd(w) ∈ EPD(λy.ky(PPDω(qc(wy)))) we need to show that

π0k(D,D)((D,D)ω) ≥ π0

(
k(C,D)(D,D)ω

)
π1k(D,D)((D,D)ω) ≥ π1

(
k(D,C)(D,D)ω

)
As in the previous case, the utility produced from the history w will cancel,

and we will be left with the inequality

−3
∞∑
i=0

βi ≥ −5− 3
∞∑
i=1

βi

reducing to the true statement −3 ≥ −5, independent of the value of β.
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In summary, we have shown:

Proposition 23. The grim trigger strategy is an equilibrium of the Iterated
Prisoner’s Dilemma game with discount factor β, i.e. qc ∈ EPDω(kβIPD), if
β ≥ 1

3
.

7. Conclusions and Future Work

The main contributions of this paper are on the one hand a notion of mor-
phism between open games and — based on this notion — the representation
of the infinite iteration of a given game as a final coalgebra. This provides
a first extension of the compositionality results from Ghani et al. (2018) to
infinitely repeated games. Nevertheless a number of challenges remain: firstly,
we need to extend our construction to state-full games and to games with
non-trivial coutility function. The former seems straightforward. Of course
we want to use this framework to provide new reasoning tools for such games
based on coinduction and coalgebraic logics.
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