
U.U.D.M. Project Report 2009:10

Examensarbete i matematik, 30 hp
Handledare och examinator: Erik Palmgren
Juni 2009

Constructive aspects of models for 
non-standard analysis 

Fredrik Nordvall Forsberg

Department of Mathematics
Uppsala University



 



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Main contributions of this thesis . . . . . . . . . . . . . 3
1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Intuitionistic logic . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 BISH, CLASS, RUSS and INT . . . . . . 4
2.1.2 Omniscience principles . . . . . . . . . . . . . 5

2.2 Constructive mathematics . . . . . . . . . . . . . . . . 6
2.3 Finite and infinite sequences . . . . . . . . . . . . . . . 7
2.4 Categorical logic . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Category theory . . . . . . . . . . . . . . . . 7
2.4.2 Interpretation of many sorted predicate first

order logic in a category C . . . . . . . . . . . 12
3 The Boundedness Principle BD . . . . . . . . . . . . . . . . . 14

3.1 Definition and general properties . . . . . . . . . . . . 14
3.2 Invalidity of BD in BISH . . . . . . . . . . . . . . . . 15

3.2.1 The typed partial combinatory algebra ωALat 15
3.2.2 The category Asm(T ) of assemblies over T . 17
3.2.3 Separating models showing the invalidity of

BD in BISH . . . . . . . . . . . . . . . . . . 22
3.3 Validity of BD in CLASS, INT, RUSS . . . . . . . . 32

4 Constructive Aspects of Reduced Products . . . . . . . . . . . 35
4.1 Palyutin’s Theorem . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Filters, filter bases and reduced products . . . 35
4.1.2 Palyutin’s Theorem . . . . . . . . . . . . . . 36

4.2 Saturation of reduced products . . . . . . . . . . . . . 39
4.2.1 Fréchet products are ω1-saturated for subge-

ometric formulas . . . . . . . . . . . . . . . . 40
4.2.2 König’s Lemma . . . . . . . . . . . . . . . . . 41
4.2.3 ω1-saturation of Fréchet products for geomet-

ric formulas is equivalent to König’s Lemma . 42
5 Some Constructive Non-standard Analysis . . . . . . . . . . . 46
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Abstract

Reduced products are generalizations of ultraproducts where the filter used
need not be an ultrafilter. With a suitable choice of filter, we can then get
a more constructive model of non-standard analysis. We study properties of
such reduced products and investigate what classical results are still valid in
a constructive setting.

A boundedness principle BD, not derivable in pure constructive math-
emetics BISH, is also studied. We show that certain theorems in classical
mathematics related to reduced prdoucts or non-standard analysis are equiv-
alent to or imply BD or LLPO, and thus not constructively provable.



1 Introduction
When Isaac Newton and Gottfried Leibniz introduced calculus in the 17th
century, they did so with the help of so-called infinitesimals, numbers x so
that |x| < r for all finite rational numbers r. The concept didn’t have a
rigorous logical foundation, however, until Abraham Robinson [Rob66] used
model theory to construct models of calculus with infinitesimals, called non-
standard analysis. (An earlier attempt was made by Schmieden and Laugwitz
[SL58].)

The methods used were non-constructive. Nevertheless, one often finds
the reasoning in the non-standard model to be fairly constructive, as focus of-
ten has shifted from logical arguments (for each ε there is a δ etc) to straight-
forward computations. If we replace the non-constructive methods used to
construct the non-standard model with constructive ones, we might hope to
get the same constructivity, but with a model we can actually construct. The
aim of this thesis is to see to what extent this is possible. For other attempts
at constructive non-standard analysis, see [Pal07, Pal98, Pal96, Pal95, Sch00].

In Section 3, we study a non-constructive principle which will turn up
multiple times in later sections. Section 4 is devoted to some nice properties
of classical non-standard models, and whether they also may hold construc-
tively. In Section 5, finally, we develop some constructive non-standard anal-
ysis with the tools we have acquired, and once again show that certain the-
orems cannot be proven constructively.

1.1 Main contributions of this thesis

The main contributions of this thesis are results showing that certain theo-
rems cannot be proven constructively. The material in Section 3 is compiled
from different sources, e. g. [Ish92, Lie05, TvD88a, TvD88b], many of them
however not as detailed as our presentation. In Section 4, Theorem 4.6
connecting Palyutin’s Theorem and BD, and Theorem 4.16, connecting the
ω1-saturation of reduced products with König’s lemma are the main new
contributions. In Section 5, we draw a new connection between BD and
non-standard analysis in Theorem 5.13.

1.2 Acknowledgements

I would like to thank my advisor professor Erik Palmgren for introducing
me to intuitionistic logic, helpful suggestions and mathematical guidance. I
would also like to thank Olov Wilander and Anton Hedin for discussions and
encouragement.

3



2 Preliminaries

2.1 Intuitionistic logic

By classical logic, we understand the logic which is usually used in math-
ematics. If we remove the principle of the excluded middle (P ∨ ¬P holds
for every statement P ), we instead get intuitionistic logic. This is equivalent
to removing the inference rule reductio ad absurdum (if ¬P leads to a con-
tradiction, P must hold). Good introductions to intuitionistic logic are e.g.
[TvD88a, TvD88b], [Bee85] and [Dum00].

In intuitionistic logic, existence is taken more seriously than in classical
logic. ∃x.P (x) holds if we can produce a t such that P (t) holds, i.e. it is
not enough that it is impossible for all t that ¬P (t) holds. P1 ∨ P2 can be
read as ∃i ∈ {1, 2}.Pi, so from this reading we see that P1 ∨ P2 holds if P1

or P2 holds, and, importantly, we can decide which one. As a consequence
of this, every proof of an existential statement gives an effective method for
constructing an element satisfying the statement.

If P ∨¬P would hold for all P , we would thus for each statement P have
an algorithm for deciding the truth of this algorithm. There is of course no
reason to believe this would be possible in general, and this is why we reject
the law of the excluded middle.

Note that P ∨ ¬P holds for decidable P , so we also have reductio ad
absurdum for such P : suppose ¬P leads to a contradiction. We now have
either P or ¬P , and we can decide which one holds. If P holds, we are done,
and if ¬P holds, we have a contradiction, from which everything follows, in
particular P . Thus P holds in both cases. We will make use of this a few
times, for example when quantifying over finite sets of natural numbers.

We define ¬P as an abbreviation of P → ⊥.
Sometimes, we will state and prove a theorem using classical logic. Such

theorems are marked with the symbol P ∨ ¬P .

2.1.1 BISH, CLASS, RUSS and INT

We will mostly work in the system of Bishop’s constructive mathematics
BISH, i.e. mathematics done with intuitionistic logic. We can now extend
BISH with different axioms to get other systems. If we add the principle of
the excluded middle, we get classical mathematics CLASS.

If we instead add Church’s Thesis – every operation from N to N is re-
cursive – and Markov’s principle – for a decidable A, ¬¬∃x A(x)→ ∃x A(x)
– we get the Russian school of constructive mathematics, denoted RUSS.
One consequence of Church’s Thesis is that there is an enumeration of all
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partial functions from N to N with countable domain. This enumeration is
called a programming system. When working in RUSS, we will assume a
fixed such system

ϕ0 ϕ1 ϕ2 . . .

D0 D1 D2
. . . ,

where for each m ∈ N, ϕm : N ⇀ N is a partial function and (Dm(n))∞n=1

is a sequence of finite subsets of N such that Dm(0) ⊆ Dm(1) ⊆ . . ., and⋃
n∈NDm(n) is the domain of ϕm. (One may think of Dm(n) as the set of

inputs x ∈ N such that ϕm(x) can be calculated in n steps.)
If we instead finally add the axioms “every f : (N → N) → N is contin-

uous”, the axiom of choice AC(N → N,N) and the Fan Theorem to BISH,
we get Brouwer’s intuitionistic mathematics INT.

As all other systems are obtained by adjoining axioms to BISH, results in
BISH are of course also valid in all systems discussed. Hence, one might want
to work in BISH instead of say CLASS for practical and not necessarily
philosophical reasons; a theorem of BISH holds in much greater generality
than a theorem that holds merely in CLASS.

A good reference for the different systems is [BR87].

2.1.2 Omniscience principles

There are of course sentences provable in classical logic which we cannot
prove using intuitionistic logic. As every intuitionistic theorem also is a clas-
sical theorem, though, we can’t hope to prove the negation of an unprovable
sentence ϕ. So how can we tell when something is unprovable? One way is
to reduce the provability of ϕ to some well-known non-constructive principle.
We call those omniscience principles, as their truth would make one (more
or less) omniscient. Most omniscience principles are weakenings of the law
of the excluded middle.

The Limited Principle of Omniscience states the following:

Principle (LPO). For every binary sequence a, either an = 0 for all n ∈ N
or there is n ∈ N such that an = 1,

i.e. given a sequence a, we can tell whether all its terms are zero, or find a
term which is not. The Lesser Limited Principle of Omniscience says:

Principle (LLPO). For every binary sequence a containing at most one 1,
a2n = 0 for all n ∈ N or a2n+1 = 0 for all n ∈ N.
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2.2 Constructive mathematics

The main point of Bishop-style constructivism is to do ordinary mathematics
using intuitionistic logic instead of classical logic. We don’t want to study
“constructive objects”, we want to constructively study objects. However,
since we want our theory to be constructive, we have to start over from
the beginning and construct the objects we want to study in a way that is
meaningful to us. Most of these definitions can be found in [BB85].

To construct a set, we must be able to tell what must be done to construct
an element of the set, and what must be done to show that two elements of the
set are equal (put another way, every set A comes with its own equivalence
relation =A, so that a set really is a pair (A, =A)). A function f : A → B
from a set A to a set B is an extensional operation from A to B, i.e. it
associates elements a of A with elements f(a) of B so that f(a) =B f(a′)
if a =A a′. Formally, a subset of B is a pair (A, i) where A is a set and
i : A → B is an inclusion function so that i(a) = i(a′) if and only if a = a′.
(This way, we really have N ⊂ Z ⊂ Q ⊂ R.) In practice however, we will
treat sets in the usual way.

We take the natural numbers and their order as given, and construct the
integers and rational numbers in the usual way. We define a real number to
be a sequence (xn)∞n=1 of rational numbers so that |xm − xn| ≤ m−1 +n−1 for
all n,m ∈ N \ {0}. This is similar to the usual construction with equivalence
classes of Cauchy sequences, but simplifies things since we don’t have to
have an additional modulus sequence for x, telling how large n must be to
approximate x to a specified accuracy. We define two real numbers (xn) and
(yn) to be equal if |xn − yn| ≤ 2n−1 for all n ∈ N \ {0}. (In the same way,
just as we have constructed the complete space R from Q, we can construct
the completion X̃ of an arbitrary metric space X.)

Arithmetic for real numbers can basically be done component-wise, as
usual. For a real number z, a canonical bound for z is an integer Kz such
that |zn| < Kz for all n ∈ N. We can e.g. choose Kz = b|z1| + 2c, the
least integer greater than |z1| + 2. Fix two real numbers x, y and write
k = max(Kx, Ky). Now we define

(a) x+ y = (x2n + y2n)∞n=1

(b) xy = (x2kny2kn)∞n=1

(c) max(x, y) = (max(xn, yn))∞n=1

(d) −x = (−xn)∞n=1
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One of course has to verify that this really defines real numbers, which can
easily be done. It is also not hard to see that the operations (x, y) 7→ x+ y,
(x, y) 7→ xy etc. are functions.

We define y to be less than x, x > y, if |xm − ym| > 2m−1 for some
m ∈ N, and define x ≤ y as ¬(x > y). Thus, we have x = y∨x < y ⇒ x ≤ y
but not necessarily x = y ∨ x < y ⇐ x ≤ y.

2.3 Finite and infinite sequences

We define N∗ to be the set of finite sequences over N. Every sequence a ∈ N∗
can be coded as a natural number 〈a〉 by a coding function 〈·〉 : N∗ → N.
There are many well-known choices for 〈·〉. We could e.g. define 〈a0, . . . , an〉 :=∏n

i=0 p
1+ai
i , where (pn)∞n=0 is an enumeration of the prime numbers, or in-

ductively define 〈a0, a1, . . . , an〉 := 〈a0, 〈a1, . . . , an〉〉′ where 〈·, ·〉′ is a pair-
ing function, e.g. 〈n,m〉′ = 2n(2m + 1) or the Cantor pairing function
〈n,m〉′ = b1

2
(n+m)(n+m+ 1) +mc.

We won’t care which one we use, as long as we have length, decoding,
restriction and concatenation functions ‖·‖, (·)i, · �i and ·∗· respectively such
that ‖〈x1, . . . , xn〉‖ = n, (〈x1, . . . , xn〉)i = xi, 〈x1, . . . , xn〉 �i= 〈x1, . . . , xi〉 for
i ≤ n and 〈x1, . . . , xn〉 ∗ 〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉.

For an infinite sequence α : N→ N, we write α(n) for the finite sequence
consisting of the n first terms of α, i.e. α(n) = 〈a(0), . . . , a(n− 1)〉. For
β : N→ N and a ∈ N∗, we write β ∈ a if β(‖a‖) = a, i.e. we identify a with
the set of infinite sequences extending it. We write a � b if a = b �k for some
k ≤ ‖b‖, i.e. a is an initial segment of b.

2.4 Categorical logic

2.4.1 Category theory

Here, we define the categorical notions that we need for interpreting logic
in a category. For a more complete introduction to category theory, see e.g.
[ML98]. We start with the two most basic definitions.

Definition 2.1. A category C consists of a class of objects C and for any two
objects A, B ∈ C a class C(A,B) of morphisms between A and B, together
with a binary operation ◦, called composition, such that:

(i) for any f ∈ C(B,C) and g ∈ C(A,B), f ◦ g ∈ C(A,C),

(ii) f ◦(g◦h) = (f ◦g)◦h for all f ∈ C(C,D), g ∈ C(B,C) and h ∈ C(A,B).
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(iii) for any object x ∈ C, there is an identity morphism idx ∈ C(x, x) such
that for every f ∈ C(A,B), idB ◦ f = f = f ◦ idA.

We often write f : A → B for f ∈ C(A,B). We call two objects A, B
isomorphic if there are morphisms f : A → B and g : B → A such that
f ◦ g = idB and g ◦ f = idA.

Definition 2.2. Let C and D be categories. A functor F from C to D is a
mapping

• associating to each object X ∈ C an object F (X) ∈ D,

• associating to each morphism f ∈ C(A,B) a morphism
F (f) ∈ D(F (A), F (B)),

such that F (idX) = idF (X) for all objects X ∈ C and F (f ◦ g) = F (f) ◦ F (g)
for all morphisms f, g in C.

Just like for morphisms, we can compose functors and for each category C,
there is an identity functor, denoted 1C. (Thus, there is a category of small
categories (small meaning that the objects and morphisms are sets and not
proper classes) with small categories as objects and functors as morphisms.)

Definition 2.3. A morphism f : A→ B is called a

• monomorphism (mono) if for all g1, g2 : X → A, f ◦ g1 = f ◦ g2 implies
g1 = g2,

• epimorphism (epi) if for all g1, g2 : B → X, g1 ◦ f = g2 ◦ f implies
g1 = g2.

Definition 2.4. The slice category C/X has as objects morphisms in C into
X ∈ C, and a morphism f : α → β is a morphism in C that makes the
following diagram in C commute:

A

α
  @@@@@@@
f // B

β~~}}}}}}}

X

We now turn to some categorical constructions.

Definition 2.5. Let {Xi : i ∈ I} be a collection of objects in a category C.
The product of {Xi : i ∈ I} is an objectX =

∏
i∈I Xi together with projection

morphisms πi : X → Xi such that, for any object Y and any collection of
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morphisms fi : Y → Xi, there is a unique morphism h : Y →
∏

i∈I Xi so
that fi = πi ◦ h for all i ∈ I, i.e. the following diagram commutes:

Y
h

���
�
�

f1

��

f2

zz 		

∏
i∈I Xi

π1

{{vvvvvvvvv
π2

��

HHHH

##HHHHHH

X1 X2
. . .

We write X1 × . . .×Xn for finite products.

Definition 2.6. Let f, g : X ⇒ Y be morphisms in a category C. The
equalizer of f and g is an object E together with a morphism e : E → X
such that f ◦ e = g ◦ e, and for any other object Z and morphism z such that
f ◦ z = g ◦ z, there is a unique morphism u : Z → E so that z = e ◦ u.

E
e // X

g
//

f //
Y

Z

u

OO�
�
� z

>>~~~~~~~~

For every property, there is a so called dual property which we get by revers-
ing all arrows. The only dual property we will use is the coequalizer.

Definition 2.7. The coequalizer of f, g : Y ⇒ X is an object E together
with a morphism e : X → E such that e ◦ f = e ◦ g, and for any other
object Z and morphism z such that z ◦f = z ◦ g, there is a unique morphism
u : E → Z such that

E

u

���
�
� X

z

~~~~~~~~~~e
oo Y

goo

f
oo

Z

commutes.
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Definition 2.8. Let f : X → Z and g : Y → Z be morphisms in a category
C. The pullback of f and g is an object P together with two morphisms
p1 : P → X and p2 : P → Y so that p1 ◦ f = p2 ◦ g, and if Q is any other
object with morphisms q1 : Q → X and q2 : Q → Y so that q1 ◦ f = q2 ◦ g,
then there is a unique morphism u : Q → P making the following diagram
commute:

Q

q1

��

q2

""

u

��@
@

@
@

P
p1

��

p2 // Y

g

��
X

f // Z

The pullback of f and g can be constructed as the equalizer (composed
with appropriate projections) of f ◦ π1, g ◦ π2 : X × Y ⇒ Z, if products and
equalizers exist. We will also consider functors f ∗ : C/Y → C/X given by
pullbacks along f , i.e. f ∗i is the left vertical arrow in the following diagram:

f ∗I

f∗i

��

//
_� I

i
��

X
f // Y

Note that if i is mono, so is f ∗i.

Definition 2.9. An object T in a category C is a terminal object if for every
object X ∈ C, there is exactly one morphism f : X → T .

Between any two terminal objects in a category, there is a unique isomor-
phism, so we write 1 for “the” terminal object.

Definition 2.10. Let C be a category. A natural number object in C is an
object N ∈ C together with morphisms S : N → N and z : 1→ N such that
for any other object N ′ with morphisms S ′ : N ′ → N ′ and z′ : 1→ N ′, there
is a unique morphism u : N → N ′ so that the following diagram commutes:

1

id1

��

z // N
S //

u

���
�
� N

u

���
�
�

1
z′ // N ′

S′ // N ′
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One should think of z : 1 → N as picking out the zero element, and
S : N → N as the successor function.

Definition 2.11. A category C has images if any morphism g : A → B
may be factorized as g = m ◦ e where e : A → I, and m : I � B is mono.
Furthermore, if there is any other factorization g = n ◦ f with f : A → J
and n : J � B mono, then there is a unique morphism h : I → J such that
n ◦ h = m.

A

f ��???????
e // I //

m //

h
���
�
� B

J
?? n

??�������

The image factorization gives a functor im : C/X → C/X defined by
im(g) = im(m ◦ e) = m, where (e : A → I,m : I � B) is an image
factorization of g = m ◦ e.

Of course, these constructions might not exist in a general category. Since
we need them to interpret logic, however, we are only interested in categories
where they do exist. We call the categories we are interested in regular and
locally cartesian closed.

Definition 2.12. A morphism f : A → B is regular epi if it arises as a
coequalizer.

Definition 2.13. A category C is called regular if it has equalizers, binary
products, a terminal object and images, and regular epis are stable under
pullback (i.e. the pullback of a regular epi along any map is again a regular
epi).

A regular category admits the interpretation of formulas with existen-
tial quantifiers. We need a locally cartesian closed category for universal
quantification.

Definition 2.14. A category C is called locally cartesian closed if every slice
category C/X is cartesian closed, i.e. it has binary products, exponentials
and a terminal object.

Equivalently, a category C is locally cartesian closed if and only if the pullback
functor f ∗ : C/B → C/A has a right adjoint Πf for each morphism f : A→ B
in C. (For a proof, see [Joh02, A1.5.3].)

Consider two monos i : A � B and j : C � B in a category C. We
say that i ≤ j if i factors through j, i.e. if there is a morphism h : A → C
such that i = j ◦ h. The collection of all monos in C with fixed codomain
B, denoted Mon(B), under the relation ≤ is thus a preorder: i ≤ i with
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h = idA, and if i ≤ j and j ≤ k, say i = j ◦ h1 and j = k ◦ h2, then
i = j ◦ h1 = (k ◦ h2) ◦ h1 = k ◦ (h2 ◦ h1) so that i ≤ k.

A ��

i ��@@@@@@@

idA // A��

i��~~~~~~~
A ��

i ��@@@@@@@
h1 // C

��
j

��

h2 // D~~

k~~~~~~~~~

B B

We could however have i ≤ j and j ≤ i with i 6= j. As a remedy for this, we
define the relation ≈ by i ≈ j iff i ≤ j and j ≤ i. By the argument above, ≈
is an equivalence relation. The equivalence classes are called subobjects of B,
and we write Sub(B) = Mon(B)/ ≈ for the collection of all of them. The
relation ≤ lifted to Sub(B) is thus a partial order. We will make much use of
subobjects and the relation ≤ in our interpretation of formulas in categories.

2.4.2 Interpretation of many sorted predicate first order logic in
a category C

The following is based on [AB03] and [Pal06]. Another good source is [Joh02].
Let C be a regular and locally cartesian closed category. An interpretation

of a multi-sorted lex logic with universal and existential quantifiers is given
by the following data:

1. A sort A is interpreted as an object JAK.

2. A typing context x1 : A1, . . . , xn : An is interpreted as the product
JA1K× . . .× JAnK, and the empty context is interpreted as the terminal
object 1.

3. A function symbol f with signature (A1, . . . , Am;B) is interpreted as a
morphism JfK : JA1K× . . .× JAmK → JBK.

4. A term in context Γ|t : B is interpreted as a morphism JΓ|t : BK :
JΓK → JBK, as follows:

(a) A variable x1 : A1, . . . , xn : An|xi : Ai is interpreted as the ith
projection πi : JA1K× . . .× JAnK → JAiK.

(b) A composite term Γ|f(t1, . . . , tm) : B is interpreted as the compo-
sition JfK ◦ 〈JΓ|t1 : A1K, . . . , JΓ|tm : AmK〉.

5. A relation symbol R with signature (A1, . . . , Am) is interpreted as a
subobject JRK ∈ Sub(JA1K× . . .× JAmK).
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6. A logical entailment Γ|ψ1, . . . , ψk ` φ is interpreted as an inequality
Jψ1K ∧ . . . ∧ JψkK ≤ JφK in Sub(JΓK), where the empty hypothesis is
interpreted as the maximal subobject [idJΓK : JΓK→ JΓK].

7. A formula in context Γ|ϕ is interpreted as a subobject JΓ|ϕK ∈ Sub(JΓK)
as follows:

(a) The true constant Γ|> is interpreted as the maximal subobject
JΓ|>K = [idJΓK : JΓK→ JΓK].

(b) Γ|t =A u is interpreted as the equalizer of JΓ|tK and JΓ|uK.
(c) An atomic formula Γ|R(t1, . . . , tk) is interpreted as the pullback of

JRK along JΓ|−→t K, i.e. 〈JΓ|t1K, . . . , JΓ|tkK〉∗(JRK).

(d) JΓ|ϕ ∧ ψK = JΓ|ϕK ∧ JΓ|ψK, the meet in Sub(JΓK).

(e) Assuming we have interpreted Γ, x : A|ϕ(x), we set JΓ|∃x ∈ A.ϕ(x)K
= ∃pJΓ, x : A|ϕ(x)K, where p is the projection p : JΓK× JAK→ JΓK
and ∃p(α) = im(p ◦ α).

(f) Supposing Γ, x : A|ϕ(x) have been defined, we set JΓ|∀x ∈ A.ϕ(x)K
= ∀pJΓ, x : A|ϕ(x)K, where p is the projection p : JΓK× JAK→ JΓK
and ∀p is the right adjoint of the pullback functor
p∗ : Sub(JΓK)→ Sub(JΓK× JAK).

(g) The interpretation of B → C, where JBK and JCK are interpreted
as subobjects [β : B � X] and [γ : C � X] respectively, is
JB → CK = (∀β ◦ β∗)(γ).
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3 The Boundedness Principle BD

3.1 Definition and general properties

Definition 3.1. A subset S ⊆ N is bounded, if there is a k ∈ N such that for
all t ∈ S, t ≤ k.

Definition 3.2. A subset S ⊆ N is pseudobounded, if for all sequences
s : N→ S,

lim
n→∞

s(n)

n
= 0.

Every bounded subset S of N is of course pseudobounded. (For a given
positive ε, just choose N > supS/ε. Then s(n)/n ≤ supS/n < ε for all
n ≥ N .) It turns out that the following principle, stating the converse, is
fruitful to study when doing constructive mathematics. It was introduced by
Hajime Ishihara in [Ish92].

Principle (BD). Every inhabited pseudobounded subset of N is bounded.

Recall that a set X is called countable if there is a surjective function
f : N → X (in other words, we can enumerate the elements of X, possibly
with repetitions). It seems very unlikely that we should be able to prove
that every subset X of N is countable, as that would involve constructing a
surjective f : N→ X for each X ⊆ N. We thus get a slightly weaker form of
BD if we only require countable pseudobounded subsets to be bounded:

Principle (BD−N). Every inhabited countable pseudobounded subset of
N is bounded.

BD is equivalent to many theorems in analysis, e.g. Banach’s Inverse
Mapping Theorem, the Open Mapping Theorem, the Closed Graph Theorem
and the Banach-Steinhaus Theorem [Ish01].

The following proposition by Richman [Ric09] sometimes makes BD
easier to work with. We call a sequence (sn) non-decreasing if we have si ≤ sj
for i < j.

Theorem 3.3 ([Ric09]). Let (sn) be a fixed non-decreasing sequence in N
with lim sn =∞. Then A ⊆ N is pseudobounded if and only if each sequence
in A is eventually bounded by (sn).

Proof. (⇒) Suppose A is pseudobounded and let (ai) be a sequence in A.
We may assume that (ai) is non-decreasing, since we can construct a non-
decreasing sequence (a′i) by a′0 = a0 and a′n+1 = max(a′n, an+1). Then ai ≤ a′i
for all i ∈ N and thus if a′i ≤ si, then ai ≤ si.
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Let tn = min{i : n ≤ si}. Then (tn) is non-decreasing and tk ≤ i if
and only if k ≤ si. Consider the sequence (bn) = (atn+1) in A. As A is
pseudobounded, there is a k ∈ N such that bn

n
≤ 1 for all n ≥ k, that is

atn+1 ≤ n. Let n ≥ k and tn ≤ i ≤ tn+1. Then ai ≤ atn+1 since ai is
non-decreasing, atn+1 ≤ n by the choice of n and n ≤ si since tn ≤ i. Thus
ai ≤ atn+1 ≤ n ≤ si, i.e. ai ≤ si for all i ≥ tk.

(⇐) Suppose that each sequence in A is eventually bounded by (sn), and
let (ai) be a sequence in A. Once again, we can assume that (ai) is non-
decreasing by constructing (a′i) as above and noting that if lim

a′i
i

= 0, then
lim ai

i
= 0, since ai ≤ a′i for all i ∈ N.

Given m ∈ N, consider the sequence (bn) = (amsn+1) in A. By the hy-
pothesis, there is a k ∈ N such that bn = amsn+1 ≤ sn for all n ≥ k. Let
n ≥ k and msn ≤ i ≤ msn+1, i.e. sn ≤ i

m
≤ sn+1. Since an is non-decreasing,

ai ≤ amsn+1 and amsn+1 ≤ sn ≤ i
m
. Thus ai ≤ i

m
for each i ≥ msk, i.e. ai

i
≤ 1

m

for all m ∈ N and i ≥ msk, thus lim ai

i
= 0.

Corollary 3.4. A ⊆ N is pseudobounded if and only if each sequence in A
is eventually bounded by n 7→ n.

Proof. Set sn = n, a non-decreasing sequence with lim sn = ∞ and apply
the theorem.

3.2 Invalidity of BD in BISH

To see that BD is not valid in BISH, we will exhibit a regular and locally
cartesian closed category where BD can’t hold. By a soundness result, we
then have BISH 6` BD. We follow the proof presented in [Lie05], but take
our time to fill in the details.

We will first introduce the category in question, and show that it is regular
and locally cartesian closed. The category is constructed from something
called a typed partial combinatory algebra.

3.2.1 The typed partial combinatory algebra ωALat

Definition 3.5 (Typed partial combinatory algebra). A typed partial com-
binatory algebra (tpca) is a non-empty set T of types with

(i) operations ×, −→ : T 2 → T ,

(ii) a set |T | of realizers of type T for each T ∈ T ,
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(iii) a partial application function ·S,T : |S −→ T | × |S| → |T | for all S,
T ∈ T such that for all S, T , U ∈ T there are elements

kS,T ∈ |S → T → S| sS,T,U ∈ |(S → T → U)→ (S → T )→ (S → U)|
pairS,T ∈ |S → T → S × T | fstS,T ∈ |S × T → S| sndS,T ∈ |S × T → T |

such that for all a, b, c of the right type,

k · a · b = a s · a · b ↓ s · a · b · c � a · c · (b · c)
fst · (pair · a · b) = a snd · (pair · a · b) = b

where e ↓ means that e is defined, and e � e′ that if e is defined, so is
e′ and e = e′.

We have a specific tpca in mind, namely the collection of ω-algebraic
lattices.

Definition 3.6. (i) A partially ordered set P is a lattice, if every pair of
elements x, y ∈ P has an unique supremum x∨y and an unique infimum
x ∧ y.

(ii) An element c ∈ P of a poset is compact if for all directed ∅ 6= D ⊆ P ,
if supD exists and c ≤ supD, then c ≤ d for some d ∈ D.

(iii) A lattice P is ω-algebraic if every element x ∈ P is the supremum of
some directed set of compact elements, and the set {c ∈ P : c is compact}
is countable.

(iv) A map f : P → Q between posets is Scott-continuous if f(supD) =
sup f(D) for all directed subsets D ⊆ P .

Let ωALat be the class of ω-algebraic lattices.

Lemma 3.7. ωALat is a tpca.

Proof. A type in ωALat is a lattice, and its realizers are all elements in the
lattice. Given two lattices S and T , S × T := {(x, y) : x ∈ S, y ∈ T} with
partial order (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′ is again an ω-algebraic
lattice and so is (S −→ T ) := {f : S → T , f Scott-continuous }, with partial
order f ≤ g iff f(x) ≤ g(x) for all x ∈ S. For a proof that these lattices are
really ω-algebraic, see [Cro93, 2.8.3].

Let S, T , U ∈ ωALat. Define kS,T , sS,T,U , pairS,T , fstS,T , sndS,T by
the equations they have to satisfy. Routine calculations then show that they
indeed are Scott-continuous and thus realizers.
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3.2.2 The category Asm(T ) of assemblies over T

Definition 3.8. Let T be a tpca. The category Asm(T ) of assemblies over
T is defined as follows.

• An object X of Asm(T ) is a triple X = (I, T,
X) where I is a set,
T ∈ T a type and 
X⊆ |T | × I a realizability relation such that
(∀i ∈ I)(∃t ∈ |T |) (t 
X i).

• A morphism f : X → X ′ is a map f : I → I ′ which is tracked by some
a ∈ |T −→ T ′|, i.e. (∀i ∈ I)(∀b ∈ |T |)

(
b 
X i⇒ a ·b ↓ ∧ a ·b 
X′ f(i)

)
.

Lemma 3.9. A morphism f in Asm(T ) is mono ⇔ f is a tracked injective
map.

Proof. (⇒) Let f : A� B be mono, and let C = ({∗}, T,
) be a singleton
set together with some tcpa T and relation 
. Let x, y ∈ A, realized by
tx and ty respectively, and assume f(x) = f(y). Define g, h : C → A by
g(∗) = x, h(∗) = y, tracked by k tx and k ty respectively. Thus (f ◦ g)(z) =
f(x) = f(y) = (f ◦ h)(z) for all z ∈ {∗}, i.e. f ◦ g = f ◦ h and hence, since f
is mono, g = h, i.e. x = y, so f is injective, and all morphisms in Asm(T )
are tracked.

(⇐) Assume f is injective and tracked. Thus f is a morphism. Let
g, h : C → A for some C and assume f ◦ g = f ◦ h, i.e. f(g(z)) = f(h(z))
for all z from C. But then, since f injective, g(z) = h(z) for all z, i.e. g = h
and hence f is mono.

Lemma 3.10. A morphism f in Asm(T ) is epi ⇔ f is a tracked surjective
map.

Proof. (⇒) ([MRR88]) Let f : A� B be epi, and let C = (P({0}), T,
C)
where there is a ∗ ∈ |T | such that ∗ 
C i for all i ∈ P({0}). Define
g, h : B → C by h(x) = {0} and g(x) = {y ∈ {0} : ∃k ∈ A.f(k) = x},
both tracked by the constant k ∗. Then for all x from A, h(f(x)) = {0} =
g(f(x)) (the predicate becomes ∃k ∈ A.f(k) = f(x), so choose k := x) thus
since f is epi, g = h, i.e. g(x) = {0} for all x, i.e. ∃k ∈ A.f(k) = x for all x,
so f is surjective.

(⇐) Assume f : A→ B is surjective and tracked. Let g, h : B → C for
some C and assume g ◦ f = h ◦ f , i.e. g(f(z)) = h(f(z)) for all z from C.
Let b be an element of B. Since f is surjective, there is a from A such that
b = f(a), i.e. g(b) = g(f(a)) = h(f(a)) = h(b). Since b was arbitrary, we
conclude that g = h and thus that f is epi.
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Lemma 3.11. In Asm(T ), the product of (IA, TA,
A) and (IB, TB,
B) is
(IA × IB, TA × TB,
) where t 
 (a, b) :⇔ fst t 
A a ∧ snd t 
B b.

Proof. Straightforward.

Lemma 3.12. The terminal object in Asm(T ) is 1 = ({∗}, T,
), where {∗}
is any singleton set and all t ∈ |T | realize ∗, i.e. t 
 x⇔ t ∈ |T |.

Proof. For any object X = (I, T ′,
′), the unique morphism from X to 1 is
the one sending every element to ∗, tracked by an arbitrary t ∈ |T −→ T ′|.

Lemma 3.13. A pullback of f : A → C and g : B → C in Asm(T ) is
the object ({〈x, y〉 ∈ IA × IB : f(x) = g(y)}, TA × TB,
′A×B), where 
′A×B
is 
A×B restricted to {〈x, y〉 ∈ IA × IB : f(x) = g(y)}, together with the
projection morphisms.

Proof. Straightforward.

Lemma 3.14. An equalizer of f, g : A ⇒ B in Asm(T ) is the object E :=
({x ∈ IA : f(x) = g(x)}, TA,
′A), where 
′A is 
A restricted to
{x ∈ IA : f(x) = g(x)}, together with the inclusion e : E → A.

Proof. The equalizer can be constructed as the pullback

P
_� //

��

B

〈1,1〉
��

A 〈f,g〉
// B ×B

which is isomorphic to E (with isomorphism 〈a, b〉 7→ a, traced by fst, and
inverse a 7→ 〈a, f(a)〉 = 〈a, g(a)〉, traced by λ∗x.pair (s k k x)(tf x), where
tf is a realizer for f (or g)).

Lemma 3.15. Let A = (I, T,
A) be an object in Asm(T ) and f : A → B
a morphism. Define Qf = (I/ ∼, T,
′), where ∼ is the relation defined by
x ∼ y :⇔ f(x) = f(y) and t 
′ [x] :⇔ t 
A y for some y ∼ x.

Then the image functor im : Asm(T )/B → Sub(B) maps f : A → B
to [m : Qf � B], where f = m ◦ e, m([x]) = f(x) and e : A → Qf is the
canonical projection, mapping x to e(x) := [x].

Proof.

• m is well-defined and mono: [x] = [y] ⇔ m([x]) = f(x) = f(y) =
m([y]).
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• m is tracked by the realizer t that tracks f : let a 
′ [x]. Then a 
 y
for some y ∼ x and hence ta 
B f(y) = f(x) = m([x]). (e is of course
tracked by the identity term s k k.)

• Let f = m′ ◦ e′ with m′ : Q′ � B be another factorization. Define
j : Qf → Q′ by j([x]) := e′(x).

– This is well-defined: if [x] = [y], then f(x) = f(y) ⇔ m′(e′(x)) =
m′(e′(y)) and sincem′ is mono, i.e. injective, we must have e′(x) =
e′(y), i.e. j([x]) = j([y]).

– j is tracked by the realizer t′ that tracks e′: let a 
′ [x], i.e. a 
 y
for some y ∼ x. Again, since m′ is mono and f(y) = f(x), we
must have e′(x) = e′(y). Thus t′ a 
Q′ e′(y) = e′(x) = j([x]).

– m′(j([x])) = m′(e′(x)) = f(x) = m([x]), so m′ ◦ j = m.

Lemma 3.16. Let f : A → B be a morphism in Asm(T ) and [y : C � A]
a subobject. Then the universal quantifier ∀fy : ∀fC → B is the identity
function from ∀fC to B, traced by fst, where

I∀fC = {b ∈ B|∀a ∈ f−1(b)∃k ∈ C
(
y(k) = a

)
∧∃t ∈ |TB × (TA −→ TC)|

(
t 
 b

)
}

and
∀fC = (I∀fC , TB × (TA −→ TC),
)

with 
 defined by

〈s, t〉 
 b :⇔ s 
B b∧∀a ∈ A∀ta 
A a∀k ∈ C
(
f(a) = b∧y(k) = a⇒ t ta 
C k

)
Proof. Note first that every b ∈ I∀fC is realized by the definition of I∀fC . So
∀fC is indeed an object in Asm(T ). Let x : D � B. We show x ≤ ∀fy ⇔
f ∗x ≤ y.

(⇒) Assume x ≤ ∀fy, i.e. there is a g : D → ∀fC such that x = id ◦ g =
g. Hence we have

(∀d ∈ D)(∀a ∈ A)
(
f(a) = x(d)⇒ (∃k ∈ C).y(k) = a

)
and since f ∗D = {〈a, d〉 ∈ A×D|f(a) = x(d)}, there is for every 〈a, d〉 ∈ f ∗D
a unique (since y mono) k ∈ C such that y(k) = a, i.e. y(k) = f ∗x(〈a, d〉).
So define h : f ∗D → C to map 〈a, d〉 to this unique k ∈ C.

Let t trace g. Then t′ = λ∗x.(snd (t (snd x)))(fst x) traces h: let
〈ta, td〉 
 〈a, d〉 ∈ f ∗D. t′ 〈ta, td〉 = (snd (t td)) ta 
C h(〈a, d〉) since
y(h(〈a, d〉)) = a and f(a) = x(d).
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(⇐) Suppose f ∗x ≤ y, i.e. f ∗x = y ◦ g. Then x(d) ∈ ∀fC for all d ∈ D:
x(d) ∈ B, and if a ∈ A with f(a) = x(d), then 〈a, d〉 ∈ f ∗D ⇒ y(g(〈a, d〉))
= f ∗x(〈a, d〉) = a. Hence k = g(〈a, d〉) works.

Let s trace g, and consider the λ-abstraction ŝ ∈ |TD −→ (TA −→ TC)|
of s, i.e. (ŝ d) a = s 〈a, d〉. Let td be a realizer for an arbitrary d ∈ D, a ∈ A
and ta 
A a. Further suppose k ∈ C such that y(k) = a and f(a) = x(d).
Then (ŝ td) ta = s 〈ta, td〉 
C g(〈a, d〉) = k since y mono, and y(g(〈a, d〉))
= a. Thus λ∗z.pair (u z)(ŝ z) traces x′ : D → ∀fC, x′(d) := x(d), where u
traces x. In particular, every x(d) is realized by 〈u td, ŝ td〉 where td 
D d,
which completes the proof that x(d) ∈ ∀fC for all d ∈ D.

Lemma 3.17. Asm(T ) is regular and locally cartesian closed.

Proof. Local cartesian closedness is well-known. For a proof, see e.g. [Bau00,
4.1.5].

Asm(T ) has binary products, a terminal object, equalizers and images
by the Lemmas 3.11, 3.12, 3.14 and 3.15. Hence, for regularity, it remains
to show that regular epis are stable under pullback. For this, let e : B → E
be the coequalizer of k1, k2 : A ⇒ B. Construct the pullback of e along an
arbitrary morphism g : X → E:

A

k1
��
k2
��

P
_�
π2 //

g∗e
��

B

e
_��

X g
// E

Now construct the pullback of k1 and k2 along π2:

Pi_� //

π∗2ki

��

A

ki

��
P π2

// B

We know that

Pi ={((x, y), z) ∈ P × A : π2(x, y) = ki(z)}
={((x, y), z) ∈ (X ×B)× A : g(x) = e(y) ∧ y = ki(z)}
={((x, ki(z)), z) ∈ (X ×B)× A : g(x) = e(ki(z))}.
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Since e is the coequalizer k1 and k2, we have e(k1(z)) = e(k2(z)) for all z ∈ A,
so that P1 = P2. Write P ′ = P1 = P2. We then have the following diagram:

P ′
_� //

π∗2k1
��
π∗2k2
��

A

k1
��
k2
��

P
_�
π2 //

g∗e
��

B

e
_��

X g
// E

But now, g∗e(π∗2k1(x, y, z)) = g∗e(x, y) = x = g∗e(π∗2k2(x, y, z)), so that g∗e
is the coequalizer of π∗2k1, π

∗
2k2 : P ′ ⇒ P , hence regular epi.

Now we are ready to look at our interpretation from Section 2.4.2 in
Asm(ωALat):

1. A sort S is interpreted as an object (S, TS,
S).

2. A typing context x1 : A1, . . . , xn : A : n is interpreted as the product
JA1K× . . .× JAnK, with the empty context interpreted as the terminal
object ({∗}, {∗}, 
∗).

3. A function symbol f with signature (A1, . . . , Am;B) is interpreted as a
morphism JfK : JA1K× . . .× JAmK → JBK, i.e. a map

JfK : IA1 × . . .× IAm → IB

which is tracked by some Scott-continuous a ∈ |TA1 × . . .× TAm −→ TB|.

4. A term in context Γ|t : B is interpreted as a morphism JΓ|t : BK :
JΓK → JBK in the standard way: a variable is interpreted as a projec-
tion function (which is Scott-continuous) and a composite term as a
composition.

5. A relation symbol R with signature (A1, . . . , Am) is interpreted as a
monomorphism JRK� JA1K× . . .× JAmK, i.e. an tracked injective map
IR → IA1 × . . .× IAm .

6. A logical entailment Γ|Ψ ` φ is interpreted as an inequality JΨK ≤ JφK
in Sub(JΓK) as usual.

7. A formula in context Γ|ϕ is interpreted as follows:

(a) JΓ|>K is the identity function [idJΓK : JΓK� JΓK], tracked by s s k.
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(b) Γ|t =A u is interpreted as the equalizer [id : E � JAK], where
E = ({x ∈ IA : t(x) = u(x)}, TA,
A), tracked by s s k.

(c) An atomic formula Γ|R(t1, . . . , tk) is interpreted as the pullback of
[r : JRK� JA1K× . . .× JAkK] along [t : JΓK� JA1K× . . .× JAkK],
i.e. the projection

[p : ({(−→x ,−→y ) ∈ JRK× JΓK : r(−→x ) = t(−→y )}, TR × TΓ,
)� JΓK].

(d) If [p : JΓK � A] represent Γ|ϕ1 and [q : JΓK � A] represent Γ|ψ,
then the pullback of p along q, composed with p, represent Γ|ϕ∧ψ.

(e) Assuming we have interpreted Γ, x : X|ϕ(x) as [α : A� JΓK×JXK],
we have JΓ|∃x ∈ X.ϕ(x)K = im(p ◦ α) where p is the projection
p : JΓK× JXK→ JΓK, with im as in Lemma 3.15.

(f) Assuming we have interpreted Γ, x : X|ϕ(x) as [α : A� JΓK×JXK],
we have JΓ|∀x ∈ X.ϕ(x)K = [id : (I, T,
) � JΓK where p is the
projection p : JΓK× JXK→ JΓK, and

I = {b ∈ JΓK|∀a ∈ p−1(b)∃k ∈ I
(
α(k) = a

)
∧ ∃t ∈ |T |

(
t 
 b

)
}

with T = TΓ × (TΓ×X −→ TA) and 〈s, t〉 
 b if

s 
Γ×X b∧∀a ∈ A∀ta 
A a∀k ∈ A
(
f(a) = b∧y(k) = a⇒ t ta 
A k

)
.

(g) The interpretation of B → C, where JBK and JCK are interpreted
as subobjects [β : B � X] and [γ : C � X] respectively, is
[id : (I, TX × (TB −→ TB × TC),
)� X] where

I = {x ∈ X : ∀b ∈ B.β(b) = x⇒ ∃c ∈ C.γ(c) = β(b) = x}

and 〈t→, tx〉 
 x if

tx 
X x∧∀b ∈ B ∀tb `B b ∀c ∈ C
(
β(b) = γ(c)⇒ t→ tb 
B×X 〈b, c〉

)
.

3.2.3 Separating models showing the invalidity of BD in BISH

We will now show that BD cannot hold in Asm(ωALat). For this, we will
consider some continuity principles. For metric spaces (X, d) and (X ′, d′),

(CP(X,X ′)) “Every function from X to X ′ is ε-δ-continuous”

state that all functions between them are continuous.
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Recall that for α, β : N→ N, “β ∈ ᾱ(m)” means that β(n) = α(n) for all
n ≤ m. The weak principle of continuity

(WC−N)
(
∀α : N→ N ∃n ∈ N.A(α, n)

)
→
(
∀α : N→ N ∃m,n ∈ N ∀β : N→ N.β ∈ ᾱ(m)→ A(β, n)

)
is a combination of choice and continuity of every operation from N→ N to
N. We will also consider a weakening of WC−N. Write 2 := {0, 1}. We
then have the continuity principle

(WCcp −N)
(
∀α : N→ 2 ∃n ∈ N.A(α, n)

)
→
(
∀α : N→ 2 ∃m,n ∈ N ∀β : N→ 2.β ∈ ᾱ(m)→ A(β, n)

)
stating that every operation from the full binary fan N → {0, 1} to N is
continuous.

Lemma 3.18. WC−N ⇒ WCcp −N.

Proof. Consider the spreads T of all (codes for) finite sequences of natural
numbers and T ′ of all finite binary sequences. If 〈x1, . . . , xn〉 ∈ T , then
〈x1, . . . , xm〉 ∈ T ′ for some maximal m ≤ n since T ′ ⊆ T are trees (m might
be 0, so that 〈x1, . . . , xm〉 = 〈〉, the empty sequence). Since T ′ is a spread,
there are ym+1, . . . , yn such that 〈x1, . . . , xm, ym+1, . . . , yn〉 ∈ T ′. Define a
mapping Γ : T → T ′ by Γ(〈x1, . . . , xn〉) = 〈x1, . . . , xm, ym+1, . . . , yn〉. Then
‖Γ(x)‖ = ‖x‖ for all x ∈ T , and Γ(x′) = x′ for all x′ ∈ T ′. Extend Γ to
infinite sequences by Γ(α) = λn. (Γ(ᾱ(n+ 1)))n.

Assume now that WC−N and the premise to WCcp −N holds for some
predicate A(α, n). With A′(α, n) ≡ A(Γ(α), n), we satisfy the premise to
WC−N since Γ(α) : N→ 2 for all α and A(β, n) holds for all β : N→ 2 by
assumption. But Γ(α) = α for all α : N→ 2, so the conclusion in WC−N
for A′(α, n) is actually the conclusion in WCcp −N for A(α, n).

We will study CP(X,X ′) mainly in the special case when X ′ = N and
X = N→ N or X = N→ 2. For this to make sense, we must give N, N→ N
and N → 2 the structure of metric spaces. Equip N and 2 with the discrete
metric

d(m,n) =

{
0 if m = n

1 if m 6= n
.

Recall that the product topology of a cartesian product
∏

i∈I Xi is the
topology generated by basic open sets

∏
Uk where Uk is open in Xk, and
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Uk 6= Xk for only finitely many k ∈ I (this coincides with the box topology
for finite products). We will equip N → N =

∏
i∈N N and N → 2 =

∏
i∈N 2

with the product topology, and see that this indeed makes N→ N and N→ 2
into metric spaces.

Lemma 3.19. Let (Xk, dk)i∈N be a countable collection of metric spaces.
Then the product topology on X =

∏
i∈NXk is induced by the metric

d(x, y) =
∞∑
k=1

2−k
dk(xk, yk)

1 + dk(xk, yk)

Proof. We first show that d indeed is a metric on X. Positive definiteness
and symmetry follows directly from the positive definiteness and symmetry
of each dk. For the triangle inequality, let x, y, z ∈ X. In general, we have
for a, b ≥ 0

a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤ a

1 + a
+

b

1 + b
, (1)

and if a < b then a/(1 + a) < b/(1 + b) as x 7→ x
1+x

is strictly increasing (the
derivative is 1/(1 + x)2 > 0 for all x 6= −1). Thus, for each k ∈ N, we have

dk(xk, zk)

1 + dk(xk, zk)
≤ dk(xk, yk) + dk(yk, zk)

1 + dk(xk, yk) + dk(yk, zk)

by the triangle inequality for dk, and furthermore by (1)

dk(xk, yk) + dk(yk, zk)

1 + dk(xk, yk) + dk(yk, zk)
≤ dk(xk, yk)

1 + dk(xk, yk)
+

dk(yk, zk)

1 + dk(yk, zk)
.

Combining this, we get

dk(xk, zk)

1 + dk(xk, zk)
≤ dk(xk, yk)

1 + dk(xk, yk)
+

dk(yk, zk)

1 + dk(yk, zk)
.

Thus each term of the sum is a metric on Xk, which implies that the whole
sum is a metric on X.

Let T denote the product topology on X and Td the topology induced by
d. We show Td ⊆ T and Td ⊇ T .

For Td ⊆ T , consider the basic open set B = {x ∈ X : d(x, z) < ε} ∈ Td
where z ∈ X and ε > 0. Choose N ∈ N such that 2−N < ε

2
. Define

Uk =

{
{yk ∈ Xk : d(yk, zk) <

ε
2N
} if k ≤ N

Xk if k > N
.
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Then U =
∏∞

k=1 Uk is a basic open set in T . We have to show that U ⊆ B.
Suppose that y ∈ U . Then

d(y, z) =
∞∑
k=1

2−k
dk(yk, zk)

1 + dk(yk, zk)

=
N∑
k=1

2−k
dk(yk, zk)

1 + dk(yk, zk)
+

∞∑
k=N+1

2−k
dk(yk, zk)

1 + dk(yk, zk)

≤
N∑
k=1

dk(yk, zk) +
∞∑

k=N+1

2−k <
N∑
k=1

ε

2N
+ 2−N <

ε

2
+
ε

2
= ε.

Thus y ∈ B and U ⊆ B.
For Td ⊇ T , let U =

∏∞
k=1 Uk be a basic open set in T , and z ∈ U . Then

there is a finite set I ⊆ N such that Uk = Xk for all k ∈ N \ I. For every
k ∈ I, let Bk = {xk ∈ Xk : dk(xk, zk) < εk} ⊆ Uk be an open subset of Uk,
centered at zk with some radius εk (these exist by the definition of open sets
in Xk). Let ε := min{2−k εk

1+εk
: k ∈ I}. This is well-defined since I is finite.

Now consider B := {x ∈ X : d(x, z) < ε}. Suppose that x ∈ B. We want
to show that x ∈ U . For all k ∈ N, we have

2−k
dk(xk, zk)

1 + dk(xk, zk)
≤

∞∑
k=1

2−k
dk(xk, zk)

1 + dk(xk, zk)
= d(x, z) < ε,

or equivalently (since the inverse of x 7→ x
1+x

is x 7→ x
1−x)

dk(xk, zk) <
2kε

1− 2kε
≤

2k2−k εk
1+εk

1− 2k2−k εk
1+εk

= εk.

Thus for each k ∈ N, xk ∈ Bk ⊆ Uk, so x ∈ U and B ⊆ U .

So what does it mean for a function f : (N → N) → N to be ε-δ-
continuous, when N is given the discrete metric and N → N the product
topology? It turns out that f only uses a finite amount of information:

Lemma 3.20. A function f : (N → N) → N is continuous at α : N → N
⇐⇒ ∃m ∈ N∀β : N→ N.β ∈ ᾱ(m)⇒ f(α) = f(β).

Proof. (⇒) f is continuous at α if for all ε > 0 there exists δ > 0 such that
for all β : N → N, if d(α, β) < δ then dN(f(α), f(β)) < ε. But now, N
is equipped with the discrete metric, so dN(f(α), f(β)) < ε is the same as
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f(α) = f(β) for ε < 1, i.e. we can find δ > 0 such that if d(α, β) < δ, then
f(α) = f(β). Now choose N such that

∑∞
k=N 2−k < δ. If β ∈ ᾱ(N), we have

d(α, β) =
∞∑
k=1

2−k
dN(α(k), β(k))

1 + dN(α(k), β(k))

=
N−1∑
k=1

2−k
dN(α(k), β(k))

1 + dN(α(k), β(k))
+
∞∑
k=N

2−k
dN(α(k), β(k))

1 + dN(α(k), β(k))

= 0 +
∞∑
k=N

2−k
dN(α(k), β(k))

1 + dN(α(k), β(k))
≤

∞∑
k=N

2−k < δ,

so f(α) = f(β).
(⇐) Suppose m is such that f(β) = f(α) if β ∈ ᾱ(m). Choose δ = 2−m.

Then, if d(α, β) < δ, we also have

2−k
dN(α(k), β(k))

1 + dN(α(k), β(k))
< d(α, β) < δ = 2−m

for all k ≤ m, i.e. dN(α(k), β(k)) = 0 for all k ≤ m, so β ∈ ᾱ(m) and
f(α) = f(β) by assumption. Hence f is continuous at α.

We can now give an easy proof of the following relationship between
WC−N and CP(N → N, N). With a little more work, one can actually
show that WC−N implies CP(X, X ′) for all complete separable metric
spaces X and X ′ (see [TvD88b, 7.2.7]).

Lemma 3.21.

(i) WC−N ⇒ CP(N→ N, N)

(ii) WCcp −N ⇒ CP(N→ 2, N)

Proof. We prove (i). (ii) can be proven in exactly the same way.
Let f : (N→ N)→ N. From Lemma 3.20, we know it is enough to prove

∀α : N→ N ∃m ∈ N ∀β : N→ N.β ∈ ᾱ(m)⇒ f(α) = f(β).

Now define A(α, n) :⇔ f(α) = n. Since f is a total function, we have
∀α : N→ N ∃n.f(α) = n, so WC−N gives

∀α : N→ N ∃m,n ∈ N ∀β : N→ N.β ∈ ᾱ(m)⇒ f(β) = n,

and since α ∈ ᾱ(m), in particular we have f(α) = n so that we get

∀α : N→ N ∃m ∈ N ∀β : N→ N.β ∈ ᾱ(m)⇒ f(β) = f(α),

i.e. f is continuous.
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Assuming the axiom of choice, we can also reverse the implication:

Lemma 3.22.

(i) CP(N→ N, N) and AC(N→ N, N) ⇒ WC−N

(ii) CP(N→ 2, N) and AC(N→ 2, N) ⇒ WCcp −N

Proof. Once again, we only prove (i) as (ii) can be proven in exactly the same
way.

Assume the premise to WC−N, i.e. for all α : N→ N there is a n ∈ N
such that A(α, n) holds. By AC(N→ N, N), we then have a choice function
Φ : (N→ N)→ N such that A(α,Φ(α)) holds for all α : N→ N.

Let α : N → N, and choose n := Φ(α). Let m be given from
CP(N → N, N) for Φ. Let β : N → N be such that β ∈ ᾱ(m). We
have to show that A(β, n) holds. But n = Φ(α), and since β ∈ ᾱ(m),
Φ(α) = Φ(β) so that n = Φ(β). Hence A(β, n) holds, since we have
A(β,Φ(β)) by AC(N→ N, N). This proves the lemma.

As we of course have the implication CP(N → N, N) ⇒ CP(N → 2, N)
(every function f : N → 2 is also a function f : N → N), we have the
following situation:

WC−N +3

��

WCcp −N

��
CP(N→ N,N) +3 CP(N→ 2,N)

We will now show that the implications from left to right cannot be
reversed in ωALat, but that BD would do exactly that. Hence BD can’t
hold in ωALat.

Lemma 3.23. In Asm(ωALat), the axiom of choice holds for all finite types
over N.

Proof. We interpret the axiom of choice

(∀z ∈ U)
[
(∀x ∈ X)(∃y ∈ Y )R(x, y, z)→ (∃f : X → Y )(∀x ∈ X)R(x, f(x), z)

]
in Asm(ωALat), but restrict ourselves to the no parameter case U = {∗}
for simplicity. The general result still holds, of course, as can for example be
seen from the more abstract proof in [Lie05, 2.3.3(i)].

The natural number object in Asm(ωALat) is (N,N⊥,
N) where n 
N
m if and only if n = m. For finite types σ and τ , the interpretation in
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Asm(ωALat) of the type of functions between them becomes the object
(σ → τ, Aσ −→ Aτ,
σ→τ ) where Aσ and Aτ are the lattices of realizers for
σ and τ respectively and f 
σ→τ g if and only if f = g. Thus, for every
finite type over N, we have that every element of it has exactly one realizer,
namely itself.

Let two finite types σ and τ be given. The interpretation of the premise
of AC(σ, τ) becomes

A = ({∗ ∈ 1: ∀x ∈ σ ∃y ∈ τ R(x, y)}, T1 × (Tσ −→ TA × TB),
)

where t 
 ∗ if and only if fst t 
1 ∗ and for all x ∈ σ and tx 
σ x (i.e. just
tx = x in this case), there is y ∈ τ such that (snd t) tx 
σ×τ (x, y).

Suppose t 
 ∗. We can then define a choice function f : σ → τ by
f(x) := snd ((snd t) x), traced by itself. The interpretation of the conclusion
of AC(σ, τ) is

B = ({[f ] : ∀ x ∈ σR(x, f(x))}, Tσ−→τ×(T(σ−→τ)×σ −→ (Tσ×Tσ)×(Tσ−→τ×Tσ)),
′)

where t 
′ [f ] ⇔ there is g : σ → τ such that R(x, g(x)) holds for all x ∈ σ,
fst t 
σ−→τ and for all x ∈ σ and all tg,x 
(σ−→τ)×σ,

snd t tg,x 
σ×σ×(σ−→τ)×σ (a, g(a), g, a).

f constructed from the interpretation of the premise is such a g : σ → τ , and
we can map a realizer t of the premise to a realizer

pair (λ∗x. snd(t x)) (λ∗x. pair (pair (snd x)((fst x)·(snd x)))(pair (fst x) (snd x)))

of the conclusion, so the morphism from A to B, sending ∗ to [f ] is indeed
traced and AC(σ, τ) holds in Asm(ωALat).

Lemma 3.24. In Asm(ωALat), WCcp −N holds, but CP(N→ N,N) does
not.

Proof. Since AC(N → 2,N) holds by the previous lemma, it is enough to
show that CP(N→ 2,N) holds by Lemma 3.22. To establish CP(N→ 2,N),
it is by Lemma 3.20 enough to see that the following sentence holds in ωALat:

∀ f : (N→ 2)→ N∃ m ∈ N∀α, β : N→ 2.
(
β ∈ ᾱ(m)→ f(α) = f(β)

)
.

Interpreting this, we see that it holds if there is a realizer t transforming
realizers for f to realizers for a m such that m is a uniform modulus of
continuity for f . But that is exactly what the fan functional is, and the fan
functional is continuous, so WCcp −N holds in Asm(ωALat).
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For the second part, assume that CP(N→ N,N) holds in Asm(ωALat).
Thus by Lemma 3.22, we have that WC−N holds. We will construct a
modulus of continuity at λx.0 functional as in [TvD88b, 9.6.10(i)] and show
that this leads to a contradiction.

Since every f : (N→ N)→ N is a total function, we of course have

∀ f : (N→ N)→ N ∀ α : N→ N ∃x ∈ N
(
f(α) = x

)
,

so by WC−N

∀ f : (N→ N)→ N ∀ α : N→ N ∃m ∈ N ∀ β ∈ ᾱ(m)
(
f(α) = f(β)

)
.

In particular, for α = λx.0 we get

∀ f : (N→ N)→ N ∃m ∈ N ∀ β ∈ λx.0(m)
(
f(β) = f(λx.0)

)
and with AC(N→ N,N) we find Φ : ((N→ N)→ N)→ N such that

∀ f : (N→ N)→ N ∀ β ∈ λx.0(Φ(f))
(
f(β) = f(λx.0)

)
.

Define Φ∗ := λf. (λx.0(Φ(f))) (i.e. we have β ∈ Φ∗(f) ⇒ f(β) = f(λx.0)),
and let n0 := Φ∗(λα.0).

We construct a neighborhood function γβ for each β : N→ N as follows:

γβ(m) = 0 for m � n0;
γβ(n0 ∗ 〈0〉 ∗ z) = 1 (for z a code for an arbitrary sequence);

γβ(n0 ∗ 〈x〉 ∗ z) =

{
1 if β(y) = 0 for all 0 < y ≤ x

2 otherwise;

γβ(m) = 1 if ¬(n0 � m ∨ n0 � m).

Every γβ is indeed a neighborhood function, so we have

∀α, β ∃x, y
(
γβ(α(x)) = y + 1

)
.

Since we have the axiom of choice for all finite types over N, we might as
well use it and we get a Ψ : (N→ N)× (N→ N)→ N so that

∀α, β ∃x
(
γβ(α(x)) = Ψ(α, β) + 1

)
.

Define Ψβ := λα.Ψ(α, β).
If now β(y) = 0 for all y > 0, we have that γβ(α(x)) = 1 for all α and

all x large enough, which forces Ψ(α, β) to be 0 for all α, i.e. Ψβ = λα.0.
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Thus, since everything in our finite type hierarchy is extensional, we get
Φ∗(Ψβ) = Φ∗(λα.0) = n0.

On the other hand, if β(y) 6= 0 for some y > 0, then γβ(n0 ∗ 〈y〉) = 2 so
that Ψ(α, β) must be 1 for α ∈ n0 ∗ 〈y〉. At the same time, we have that
Ψ(λx.0, β) = 0 since (λx.0) ∈ n0 ∗ 〈0〉 by the definition of n0. Hence there
are α ∈ n0 such that Ψβ(α) 6= Ψβ(λx.0), and we conclude that Φ∗(Ψβ) 6= n0.

Hence, even though CP(N → N,N) demands that every operation from
N→ N to N is continuous, we cannot compute the value of Ψβ continuously
in β at λx.0 (if we could, we could determine whether β(x) = 0 for all x
from an initial segment of β) and we have arrived at our contradiction. Thus
CP(N→ N,N) cannot hold in ωALat.

To see that BD can’t hold in Asm(ωALat), we will consider yet another
metric space, this time a restriction of N→ 2. Let

N? := {α : N→ 2|∀m ∈ N
(
α(m) = 0 =⇒ ∀n > m. α(n) = 0

)
},

i.e. N? consists of all non-increasing binary sequences. N? can be seen as the
one-point compactification of N (see [BB85, 4.6.6]) if we identify n ∈ N with
the sequence κn whose first n terms are 1, and all other 0. The constant one
sequence κ∞ = λm. 1 then becomes a point at infinity.

As before, we of course have that CP(N → 2,N) implies CP(N?,N).
We will see that N? have some nice properties when it comes to sequential
continuity. For metric spaces (X, d) and (X ′, d′), we consider the continuity
principle

(CPseq(X,X ′)) Every function from X to X ′ is sequentially continuous

stating that for every f : X → X ′, if an → a in X, then f(an) → f(a) in
X ′ for every sequence (an)∞n=1 in X. The following two lemmas are proved in
[BS04] as propositions 4.3 and 4.4.

Lemma 3.25. CP(N?, Y ) ⇔ CPseq(N?, Y ) for any metric space Y .

Proof. (⇒) This of course holds in general: let f : N? → Y be continuous
and an → a in N?. Let ε > 0 be given. We shall find m ∈ N so that
d(f(an), f(a)) < ε for n > m. But since f is continuous, there is δ > 0 such
that d(f(x), f(a)) < ε if d(x, a) < δ. Furthermore, since an → a, there is
m ∈ N so that d(an, a) < δ for n > m, hence d(f(an), f(a)) < ε if n > m and
f(an)→ f(a), so that f is sequentially continuous.

(⇐) Assume that every f : N? → Y is sequentially continuous. In partic-
ular, since κn → κ∞, we then have that f(κn)→ f(κ∞) for every f : N? → Y ,
i.e.

∀f : N? → Y, ε > 0 ∃m ∈ N ∀n ≥ m. d(f(κn), f(κ∞)) < ε. (2)

30



Let f : N? → Y , α ∈ N? and ε > 0 be given. By (2), there is m ∈ N such
that if n ≥ m then d(f(κn), f(κ∞)) < ε/4. Let δ := 2−(m+1). We show that
d(f(α), f(α′)) < ε if d(α, α′) < δ, so that f is pointwise continuous.

Since there are only finitely many i < m, we either have αi = 1 for all
i < m, or there is a least i < m such that αi = 0. In the latter case,
α = κi, and the only α′ ∈ N? with d(α, α′) < δ < 2−(i+1) is α′ = α, so that
d(α, α′) < δ =⇒ d(f(α), f(α′)) = 0 < ε.

Otherwise, if αi = 1 for all i < m, define g : N? → N? by g(β)i = αi · βi.
Then g(κ∞) = α and for any m′ ≥ m, g(κm′) = κn for a unique m ≤ n ≤ m′.
If we apply (2) to f ◦ g, we find m′ ∈ N such that d(f(g(κn′)), f(α)) =
d(f(g(κn′)), f(g(κ∞))) < ε/4 for all n′ ≥ m′. Now g(κmax(m,m′)) = κn0 for
somem ≤ n0 ≤ max(m,m′) and d(f(κn0), f(α)) = d(f(g(κmax(m,m′))), f(α)) <
ε/4 since trivially max(m,m′) ≥ m′. But we also have d(f(κn0), f(κ∞)) <
ε/4 by (2) since n0 ≥ m. Combining this, we get

d(f(α), f(κ∞)) ≤ d(f(α), f(κn0)) + d(f(κn0), f(κ∞)) <
ε

4
+
ε

4
=
ε

2
.

Now, if d(α, α′) < δ = 2−(m+1), then α′i = 1 for all i < m and we can
repeat the argument in the previous paragraph (with g′(β)i = α′i · βi) to get
d(f(α′), f(κ∞)) < ε/2. Thus, for α′ with d(α, α′) < δ, we have

d(f(α), f(α′)) ≤ d(f(α), f(κ∞)) + d(f(κ∞), f(α′)) <
ε

2
+
ε

2
= ε,

so f is pointwise continuous.

Lemma 3.26. CPseq(N?,N) ⇔ CPseq(X,N) for any complete separable
metric space X.

Proof. (⇐) Trivial, as N? is separable and complete.
(⇒) Consider any f : X → N. Let (xn)∞n=1 be a sequence in X with

xn → x. Define g : N? → X by g(α) = limn→∞ h(α, n), where

h(α, n) =

{
x if α(k) = 1 for all k ≤ n

xm if α(k) = 1 for 0 ≤ k ≤ m and α(k) = 0 for m+ 1 ≤ k ≤ n.

We then have g(κn) = xn for all n ∈ N and g(κ∞) = x. By assumption,
f ◦ g is sequentially continuous, so for every ε > 0, there is m ∈ N such that
d(f(xn), f(x)) = d(f(g(κn)), f(g(κ∞))) < ε for all n ≥ m, so f : X → N is
sequentially continuous.
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Lemma 3.27. BD and CP(N→ 2,N) ⇒ CP(N→ N,N).

Proof. We now have the following situation:

CP(N→ N,N) +3 CP(N→ 2,N) +3 CP(N?,N)

CPseq(N→ N,N)
��

BD

KS

ks Lemma 3.26 +3 CPseq(N?,N)
��
Lemma 3.25

KS

where the leftmost vertical equivalence holds because BD is equivalent to
that every sequentially continuous function is pointwise continuous (see The-
orem 5.12).

Thus, under the assumption of BD, we can follow the implications all
the way from CP(N→ 2,N) to CP(N→ N,N).

Summing up everything, we finally get:

Theorem 3.28 (Peter Lietz [Lie05]). BD does not hold in the category
Asm(ωALat).

Proof. Assume that BD holds inAsm(ωALat). By Lemma 3.24, WCcp −N
holds in Asm(ωALat) and thus CP(N → 2,N). But then CP(N → N,N)
holds in Asm(ωALat) by Lemma 3.27, contradicting Lemma 3.24.

3.3 Validity of BD in CLASS, INT, RUSS

Even though BD can’t be proven constructively, it can be proven from the
extra axioms introduced in Brouwer’s intuitionism or under a recursive inter-
pretation. Using classical logic, BD can of course easily be proved by using
contraposition:

Theorem 3.29. BD is valid in CLASS.

Proof. Assume that A is not bounded. Then, for each n ∈ N , there is a
sn ∈ A such that sn > n (if not, A would be bounded by n). But then
(sn) is a sequence in A which is not eventually bounded by n, so A is not
pseudobounded by Corollary 3.4.

The following two theorems are proved by Ishihara in [Ish92].
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Theorem 3.30. BD−N is valid in INT.

Proof. Since AC(N→ N,N) and CP(N→ N,N) are axioms of INT, WC−N
holds in INT by Lemma 3.22.

Let A = {an : n ∈ N} ⊆ N be a countable pseudobounded subset of N.
For every α : N→ N, (aα(n))

∞
n=1 is then a sequence in A, so that aα(n)n

−1 → 0
by pseudoboundedness. Choosing ε = 1, we thus find

∀α : N→ N ∃k ∈ N ∀n ≥ k
( ∣∣aα(n)n

−1
∣∣ < 1

)
which becomes

∀α : N→ N ∃k, ` ∈ N ∀β : N→ N.β ∈ α(`)→ ∀n ≥ k
( ∣∣aβ(n)n

−1
∣∣ < 1

)
with an application of WC−N. Choose α = λu.0, the constant zero se-
quence, and let m = max(k, `), where k and ` are given for α. We then
have

∀β ∈ λu.0(`) ∀n ≥ k
( ∣∣aβ(n)n

−1
∣∣ < 1

)
.

For each i ∈ N, construct β : N → N such that β(n) = 0 for n < m
and β(n) = i for n ≥ m. Then β ∈ λu.0(`) (because m ≥ `), and for
n = m ≥ k we have

∣∣aβ(m)m
−1
∣∣ < 1, i.e. ai < m (since β(m) = i) and thus

A is bounded.

Theorem 3.31. BD−N is valid in RUSS.

Proof. Let A = {an : n ∈ N} ⊆ N be a countable pseudobounded subset of N.
By our recursive interpretation, there exists a partial function ψ : N ⇀ N such
that if (ϕs(n))∞n=1 is a sequence in A, then ψ(s) is defined and |ϕs(n)n−1| < 1
for all n ≥ ψ(s).

Define An := {a ∈ A : a ≥ n}, and let θ : N ⇀ N be the partial
function θ(n) = amini(ai≥n), i.e. θ(n) ∈ An if An is inhabited, otherwise θ(n)
is undefined. With the s-m-n-theorem (see [BR87, 3.1.7]), construct a total
function σ : N→ N such that

ϕσ(k)(n) =

a0 if ¬∃i ≤ n
(
k ∈ Dk(i) ∧ ϕk(k) ≤ i

)
θ

(
min
i≤n

(k ∈ Dk(i) ∧ ϕk(k) ≤ i)

)
if ∃i ≤ n

(
k ∈ Dk(i) ∧ ϕk(k) ≤ i

)
.

(Recall that Dk(i) intuitively is the set of inputs x ∈ N on which ϕk(x) can
be computed in i steps.)

Consider the partial function k 7→ ψ(σ(k)). It has some index k0, i.e.
ϕk0(k) = ψ(σ(k)). Now suppose ϕk0(k0) is undefined, i.e. k0 /∈ Dk0(n) for all
n ∈ N. Then ϕσ(k0)(n) = a0 for all n ∈ N, so (ϕσ(k0)(n))∞n=1 is a sequence in
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A. Thus ψ(σ(k0)) is defined. But ϕk0(k0) = ψ(σ(k0)), so ϕk0(k0) is defined,
which contradicts that it was undefined. Hence ϕk0(k0) is not undefined and
so ϕk0(k0) is defined by Markov’s principle.

Let ν := minn(k0 ∈ Dk0(n)∧ϕk0(k0) ≤ n). Suppose that Aν is inhabited.
Then (ϕσ(k0)(n))∞n=1 is a sequence in A (for n < ν, ϕσ(k0)(n) = a0 ∈ A
since ν was minimal, and for n ≥ ν, ϕσ(k0)(n) = θ(ν) ∈ Aν ⊆ A) and
ϕk0(k0) = ψ(σ(k0)) ≤ ν, so that 1 > ϕk0(ν)ν−1 = θ(ν)ν−1 ≥ 1 (since
θ(ν) ∈ Aν), which is a contradiction. Hence Aν is not inhabited and ai < ν
for all ai ∈ A.
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4 Constructive Aspects of Reduced Products

4.1 Palyutin’s Theorem

4.1.1 Filters, filter bases and reduced products

We recall that a filter F on a set S is a subset of P(S) such that S ∈ F ,
∅ /∈ F , for all X ∈ F , if X ⊆ Y then Y ∈ F and if X, Y ∈ F then X∩Y ∈ F .
An ultrafilter is a filter U where either A ∈ U or S \ A ∈ U for each A ⊆ S.
If U is of the form U = {X : A ⊆ X} for some A ⊆ S, it is called principal.
Ultrafilters which are not principal are called non-principal or free.

Given a family (Ai)i∈I of models, indexed by a set I, and a filter F ⊆ P(I)
on I, we can construct the reduced product

∏
i∈I Ai/F . An atomic formula

ϕ holds in
∏

i∈I Ai/F if the set {i ∈ I : Ai |= ϕ} belongs to the filter F . In
particular, this means that constants and function symbols are interpreted
“compentent-wise”, i.e. cA := [λi.cAi ] and g(x)A := [λi.g(x)Ai ] (we write
[f ] to denote the equivalence class of f : I → ∪Ai under the equivalence
relation [f ] = [g] ⇔ {i ∈ I : Ai |= f(i) = g(i)} ∈ F , i.e. [f ] = [g] ⇔∏

i∈I Ai/F |= f = g).
If F is in fact a free ultrafilter, we call the product an ultraproduct, and

if all Ai are the same, say Ai = A, we call
∏

i∈I A/F a reduced power or
ultrapower if F is a free ultrafilter.

Ultrapowers have the nice property of being elementary equivalent to their
original models. This follows from the fundamental theorem of ultraproducts,
known as Łos’s Theorem (see [CK73, 4.1.9]). The proof of it is constructive,
at least when I = N (being a simple induction over the complexity of for-
mulas), but the ultrafilter itself is not constructive. Thus, when working
constructively, we instead turn to reduced products. The corresponding the-
orem for reduced products is called Palyutin’s Theorem (Theorem 4.2). To
make things smoother from a constructive point of view, we consider filter
bases instead of filters.

Definition 4.1 (Filter base). Let S be a set. B ⊆ P(S) is a filter base if
the following holds:

(i) X, Y ∈ B ⇒ ∃Z ∈ B
(
Z ⊆ X ∩ Y

)
,

(ii) B is inhabited and ∅ /∈ B.

Every filter is a filter base, and from every filter base B over S, a filter B′
= {X ⊆ S : ∃Z ∈ B

(
Z ⊆ X

)
} can be constructed. An important filter

base is Fr := {N \ {0, . . . , n} : n ∈ N} which is a base for the Frechét filter
consisting of all cofinite subsets of N.
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4.1.2 Palyutin’s Theorem

Classically, the following theorem holds:

P ∨ ¬P Theorem 4.2 (Palyutin [Pal80]). Let ϕ be a h-formula (i.e. ϕ is built
up from ∧, ∃, ∀, ∃x ψ1(x) ∧ ∀x (ψ1(x) → ψ2(x)) and atomic formulas), and
let F be a filter base. Then

∃B ∈ F
(
B ⊆ {i ∈ I : Ai |= ϕ(a(i))}

)
⇐⇒

∏
i∈I

Ai/F |= ϕ(a)

This is as much as we can hope for, since we have (constructive) counter-
examples for ∨ and unrestricted→ (note that ¬ is a special case of→, since
we define ¬P to be P → ⊥):

Let ϕ(a) ≡ a mod 2 = 0 ∨ a mod 2 = 1, Ai = N, F = Fr, and ai = i.
We then have Ai |= ϕ(ai) for each i ∈ N, since mod 2 and equality on N is
decidable. In the reduced product, though, we have∏

i∈N

Ai/Fr |= ϕ(a)⇔

⇔
∏
i∈N

Ai/Fr |= a mod 2 = 0 or
∏
i∈N

Ai/Fr |= a mod 2 = 1

⇔ ∃k∀n ≥ k
(
an mod 2 = 0

)
or ∃k∀n ≥ k

(
an mod 2 = 1

)
⇔ ∃k∀n ≥ k

(
n mod 2 = 0

)
or ∃k∀n ≥ k

(
n mod 2 = 1

)
which is obviously false (n and n+ 1 can’t both be or not be divisible by 2).
Thus the implication

∃B ∈ F
(
B ⊆ {i ∈ N : Ai |= ϕ(a(i))}

)
=⇒

∏
i∈N

Ai/F |= ϕ(a)

is false, since {i ∈ N : Ai |= ϕ(a(i))} = N and F is inhabited.
For a counterexample of →, let ϕ(a) ≡ ¬(a mod 2 = 1)→ a mod 2 = 0,

Ai = N, F = Fr, and ai = i. Once again, we then have Ai |= ϕ(ai) for each
i ∈ N: Suppose Ai |= (ai mod 2 = 1)→ ⊥. Equality on N is decidable, so we
know ai mod 2 = 0∨ ai mod 2 = 1. But ai mod 2 = 1 gives a contradiction,
hence we must have ai mod 2 = 0.

In the reduced product, we get in the same way as before that∏
i∈N

Ai/Fr 6|= a mod 2 = 0, and
∏
i∈N

Ai/Fr 6|= a mod 2 = 1

Thus ∏
i∈N

Ai/Fr |= ¬
(
a mod 2 = 1

)
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but ∏
i∈N

Ai/Fr 6|= a mod 2 = 0,

so ∏
i∈N

Ai/Fr 6|= ¬
(
a mod 2 = 1

)
→ a mod 2 = 0︸ ︷︷ ︸

ϕ(a)

.

Constructively, Theorem 4.2 instead becomes the following. We will show
that this is as much as we can get by constructing a Brouwerian counter-
example.

Theorem 4.3. Let F be a filter base consisting of decidable sets, and I a
projective set (i.e. the axiom of choice holds on I).

(i) If ϕ is geometric (i.e. ϕ is built up from atomic formulas and ∧, ∨, ∃),
then ∏

i∈I

Ai/F |= ϕ(a) =⇒ ∃B ∈ F
(
B ⊆ {i ∈ I : Ai |= ϕ(a(i))}

)

(ii) If ϕ is constructive Horn (i.e. ϕ is built up from atomic formulas and
∧, ∀, ∃, ϕ1 → ϕ2 where ϕ1 is geometric), then∏

i∈I

Ai/F |= ϕ(a)⇐= ∃B ∈ F
(
B ⊆ {i ∈ I : Ai |= ϕ(a(i))}

)
Proof. We follow [Pal92] and proceed by induction on formulae both in (i)
and (ii). We have

∏
i∈I Ai/F |= ⊥ ⇔ ∃B ∈ F

(
B ⊆ {i ∈ I : Ai |= ⊥}

)
since

the right hand side just reduces to ∃B ∈ F.B ⊆ ∅, i.e. ∅ ∈ F which is false
by the filter base axioms.

The other atomic cases follow by definition and the following lemma:

Lemma 4.4. Let A =
∏

i∈I Ai/F be a reduced product of L-structures and
t(x1, . . . , xk) an L-term. For all [f1], . . . , [fk] ∈ A we then have

t([f1], . . . , [fk])
A = [λi.t(f1(i), . . . , fk(i))

Ai ].

Proof of the lemma. Induction on the complexity of terms. If t(x) ≡ c is a
constant, cA = [λi.cAi ] by definition, and if t(x1, . . . , xk) ≡ xj is a variable,
t([f1], . . . , [fk])

A = [fj] = [λi.fj(i)] = [λi.t(f1(i), . . . , fk(i))
Ai ].

For the induction step, assume t(x1, . . . , xk) ≡ g(t1(x), . . . , tn(x)) where
tj([f ])A = [λi.tj(f(i))Ai ] for 1 ≤ j ≤ n. By definition, we have
g(t1([f ]), . . . , tn([f ]))A = [λi.g(t1([f ])A(i), . . . , tn([f ])A(i))] which by the in-
duction hypothesis is the same as [λi.g(t1(f(i)), . . . , tn(f(i)))Ai ], and we are
done.
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We now continue with the proof of Theorem 4.3. Write A :=
∏

i∈I Ai/F .

(i) ∧-case Suppose ϕ = ϕ1 ∧ ϕ2 and A |= ϕ. Then A |= ϕ1 and A |= ϕ2

and hence by the induction hypothesis, ∃Bj ∈ F (Bj ⊆ {i ∈ I : Ai |=
ϕj}) for j = 1, 2. Since F is a filter base, there is B ∈ F such that
B ⊆ B1∩B2 ⊆ {i ∈ I : Ai |= ϕ1}∩{i ∈ I : Ai |= ϕ2} = {i ∈ I : Ai |= ϕ}.
∨-case Suppose ϕ = ϕ1∨ϕ2 and A |= ϕ. Then A |= ϕ1 or A |= ϕ2 and
hence by the induction hypothesis, ∃Bj ∈ F (Bj ⊆ {i ∈ I : Ai |= ϕj})
for j = 1 or j = 2. Now, for this j, {i ∈ I : Ai |= ϕj} ⊆ {i ∈ I :
Ai |= ϕ1 or Ai |= ϕ2 } and hence Bj suffices.

∃-case Suppose ϕ = ∃xψ(x) and A |= ϕ, i.e. there is a ∈ A such that
A |= ψ(a). By the induction hypothesis, there is a B ∈ F such that
B ⊆ {i ∈ I : Ai |= ψ(ai)} ⊆ {i ∈ I : Ai |= ϕ}.

(ii) ∧-case Suppose ϕ = ϕ1∧ϕ2 and B ⊆ {i ∈ I : Ai |= ϕ} = {i ∈ I : Ai |=
ϕ1 and Ai |= ϕ2} ⇒ B ⊆ {i ∈ I : Ai |= ϕj} and hence A |= ϕj by the
induction hypothesis, for j = 1, 2. Thus A |= ϕ.

∃-case Suppose ϕ = ∃xψ(x) and B ⊆ {i ∈ I : Ai |= ϕ}. For each i ∈ B,
we can by the projectivity of I choose an ai such that Ai |= ψ(ai),
i.e. B ⊆ {i ∈ I : Ai |= ψ(ai) and hence by the induction hypothesis
A |= ψ(a) for a(n) = an if n ∈ B, a(n) = bn for some bn ∈ An otherwise
(this works, since B is decidable). Thus A |= ϕ.

∀-case Suppose ϕ = ∀xψ(x) and B ⊆ {i ∈ I : Ai |= ϕ}. Let a ∈ A.
If Ai |= ∀xψ(x), we must in particular have Ai |= ψ(ai), so that
{i ∈ I : Ai |= ϕ} ⊆ {i ∈ I : Ai |= ψ(ai)} and hence B ⊆ {i ∈ I : Ai |=
ψ(ai)}, so that A |= ψ(a) by the induction hypothesis. Since a ∈ A
was arbitrary, we conclude A |= ∀xψ(x).

→-case Suppose ϕ = ϕ1 → ϕ2, where ϕ1 is geometric, and B ⊆ {i ∈
I : Ai |= ϕ}. Suppose A |= ϕ1. By (i), we then have a B′ ∈ F with
B′ ⊆ {i ∈ I : Ai |= ϕ1}. There is a Z ⊆ B ∩ B′ ⊆ {i ∈ I : Ai |= ϕ1 ∧
(ϕ1 → ϕ2)} ⊆ {i ∈ I : Ai |= ϕ2}. Hence, by the induction hypothesis,
A |= ϕ2 and A |= ϕ1 → ϕ2 ⇔ A |= ϕ.

Corollary 4.5.∏
i∈I

Ai/F |= ϕ(a)⇐⇒ ∃B ∈ F
(
B ⊆ {i ∈ I : Ai |= ϕ(a(i))}

)
holds for subgeometric formulas ϕ (i.e. ϕ is built up from atomic formulas,
∧ and ∃).
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Proof. Just combine (i) and (ii) from the theorem.

Theorem 4.6. Theorem 4.2 ⇒ BD.

Proof. Assume that Theorem 4.2 holds for formulas containing ∀ and con-
sider the ⇐ direction. Let S ⊂ N be pseudobounded, i.e. for all sequences
s : N→ S we have (∃k)(∀n ≥ k)

(
s(n) < n

)
. Choose I = N, F = Fr,

Ai = (S,<), φ(a) ≡ ∀x
(
x < a

)
and a(n) = n. Then∏

i∈N

S/Fr |= ∀x
(
x < a

)
=⇒ {i ∈ N : S |= ∀x

(
x < a

)
} ∈ Fr

⇐⇒(∀s : N→ S)∃k(∀n ≥ k)
(
s(n) < n

)
=⇒ ∃k(∀n ≥ k)∀s ∈ S

(
s < n

)
Now, the premise says that S is pseudobounded and is therefore by assump-
tion true. Thus, we get

∃k∀n ≥ k∀s ∈ S
(
s < n

)
and in particular choosing n = k

∃k∀s ∈ S
(
s < k

)
,

i.e. S is bounded, and BD is proved.

If we allow formulas containing ∃x ψ1(x) ∧ ∀x (ψ1(x) → ψ2(x)), we can
once again derive BD since ∀xϕ(x) ⇐⇒ ∃x x = x ∧ ∀x (x = x → ϕ(x)).
Thus, the only formulas among the ones mentioned in Theorem 4.2 for which
the theorem is also constructively valid are formulas built up from ∃, ∧ and
atomic formulas.

4.2 Saturation of reduced products

In this section, we will investigate to what extent the following theorem,
proved classically by Jónsson and Olin [JO68], is constructively valid.

P ∨ ¬P Theorem 4.7. Let Fr be the Frechét filter on N. Then
∏

i∈NAi/Fr is
ω1-saturated.

Definition 4.8 (κ-saturated). A structure A is κ-saturated if for each
X ⊆ A with cardinality |X| < κ, and for each set Y consisting of formulas
over the signature of (A, x)x∈X , if every finite subset of Y is satisfiable then
Y is satisfiable.

Thus, a structure A is ω1-saturated if every set Y of formulas over (A, x)x∈X
is satisfiable whenever it is finitely satisfiable holds for every countable X.
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4.2.1 Fréchet products are ω1-saturated for subgeometric formulas

Instead of working with realizers of sets of formulas directly, we will work
with something which we call internal sets.

Definition 4.9 (Internal set). Let A =
∏
Ai/Fr be a Fréchet product.

S ⊆ A is called internal if there is a sequence (Sn) of sets Sn ⊆ An such
that

[x] ∈ S ⇔ (∃k)(∀n ≥ k)x(n) ∈ Sn.

The set S given by the sequence (Sn) is denoted (Sn)+.

Note that the set

S = {x ∈
∏

An/Fr :
∏
An/Fr |= ϕ(x)}

of realizers of a subgeometric formula ϕ is internal with sequence

Sn = {y ∈ An : An |= ϕ(y)}

by Theorem 4.5, since

[x] ∈ S ⇔ (∃k)(∀n ≥ k)
(
An |= ϕ(x(n))

)
⇔ (∃k)(∀n ≥ k)

(
x(n) ∈ Sn

)
.

Suppose that two internal sets S ⊆ T are given by the sequences (Sn)
and (Tn) respectively. Classically, we then have (∃k)(∀n ≥ k)

(
Sn ⊆ Tn

)
(if

not, for all k there is a n ≥ k and a an ∈ Sn such that an /∈ Tn. But then
[λn.an] ∈ S \ T , contradicting S ⊆ T ). Constructively, it is not so clear
that this is always the case. Instead, we use the following stronger inclusion
relation:

Definition 4.10 (Strongly included). Let (An) and (Bn) be sequences of sets.
Then (An) is strongly included in (Bn), written (An) � (Bn), if (∃k)(∀n ≥ k)(
An ⊆ Bn

)
.

Theorem 4.11 ([Pal92]). Let
∏

n∈NAn/Fr be a Fréchet product, and let
(S0

n) � (S1
n) � (S2

n) � . . . be a strongly decreasing chain of inhabited sequences,
where (Sin) ⊆ An. Then ∩i(Sin)+ is inhabited.

Proof. Let [xi] ∈ (Sin)+. Choose successively k0 < k1 < k2 < . . . so that
∀n ≥ km

(i) xm(n) ∈ Smn

(ii) Smn ⊇ Sm+1
n .
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This is possible since for eachm ∈ N, (i) [xm] ∈ (Smn )+ and thus (∃k)(∀n ≥ k)(
xm(n) ∈ Smn

)
, and (ii) (Smn ) � (Sm+1

n ), i.e. (∃k′)(∀n ≥ k′)
(
Sm+1
n ⊆ Smn

)
,

so let km = max(k, k′).
Now, for km ≤ n < km+1, define y(n) = xm(n). For n < k0, let y(n) =

x0(n). We now have to prove that [y] ∈ (Sin)+ for each i. To do this, we
have to find k such that y(n) ∈ Sin for all n ≥ k. But consider n ≥ ki, say
ki+` ≤ n ≤ ki+`+1. By (i) we then have y(n) = xi+`(n) ∈ Si+`n , and from (ii)
it follows that Si+`n ⊆ Sin, thus y(n) ∈ Sin and [y] ∈ ∩i(Sin)+.

4.2.2 König’s Lemma

Let 〈·〉 : N∗ → N be a coding function with length, decoding and restriction
functions ‖·‖, (·)i and · �i respectively as described in Section 2.3. We will
further assume that our coding fuction is bijective.

Definition 4.12 (Finitary tree). A set T ⊆ N of codes for sequences of
natural numbers is a finitary tree if

(i) For each s ∈ N, s ∈ T ∨ s /∈ T ,

(ii) 〈x0, . . . , xn〉 ∈ T ⇒ 〈x0, . . . , xn−1〉 ∈ T ,

(iii) For all x = 〈x0, . . . , xn〉 ∈ T , there ismx ∈ N such that 〈x0, . . . , xn, z〉 ∈ T
implies z ≤ mx.

If mx in (iii) is constantly 1 for all x, T is called a binary tree.

Lemma 4.13. If w ∈ T , then w �k∈ T for all k ≤ ‖w‖.

Proof. Induction on ‖w‖ − k. For k = ‖w‖, w �‖w‖= w ∈ T by assumption.
For ‖w‖ − k  ‖w‖ − k + 1 ⇔ k  k − 1, suppose w �k ∈ T . Then w �k−1

∈ T by (ii) in the definition.

P ∨ ¬P Theorem (König’s Lemma). If T is an infinite finitary tree (i.e. T
has arbitrarily large finite subsets), then there is a sequence (xi)

∞
i=0 such that

〈x0, . . . , xn〉 ∈ T for each n.

Proof. Consider all x with 〈x〉 ∈ T . There is at most m〈x〉 of them, so if the
subset Sx = {w ∈ T : w �1= x} would be finite for all of them, T wouldn’t
have arbitrarily large finite subsets. Thus, with an application of the law of
the excluded middle, Sx must be infinite for at least one x. Let x0 be the
smallest such x.

Having chosen x0, . . . , xn−1, repeat the argument with x′ = 〈x0, . . . , xn−1, x〉,
and we get the desired sequence by induction.
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1 1 1 1 1 1

0 0 0 0 0 0
. . .

Figure 1: The tree T from the proof of Theorem 4.14. A path of consisting of x
(x ∈ {0, 1}) stops after k steps if a2k+x = 1. Otherwise, the path will have infinite
length.

If we restrict König’s Lemma to binary trees, we get Weak König’s Lemma.
König’s Lemma implies LLPO and is hence not constructive:

Theorem 4.14. (Weak) König’s Lemma ⇒ LLPO.

Proof. Assume that König’s Lemma holds. Let (an)∞n=0 be a binary sequence
with at most one 1, and let

Tn = {〈0, . . . , 0〉︸ ︷︷ ︸
n times

: a2k = 0 for 0 ≤ k ≤ n}∪{〈1, . . . , 1〉︸ ︷︷ ︸
n times

: a2k+1 = 0 for 0 ≤ k ≤ n}

and
T =

⋃
n∈N

Tn.

Then T is an binary tree. Furthermore, T is infinite, since {〈0〉 , 〈0, 0〉 ,
. . ., 〈0, . . . , 0〉} ⊆ T or {〈1〉 , 〈1, 1〉 , . . . , 〈1, . . . , 1〉} ⊆ T for arbitrarily large
such subsets (and we can decide which one holds by looking at finitely many
values ak). By König’s Lemma, we then find a sequence (xi)

∞
i=0 such that

〈x0, . . . , xn〉 ∈ T for each n. Now just inspect x0: If it is 0, then a2n = 0 for
all n ∈ N, otherwise a2n+1 = 0 for all n ∈ N and LLPO is proved.

4.2.3 ω1-saturation of Fréchet products for geometric formulas is
equivalent to König’s Lemma

Theorem 4.15.
∏

i∈NAi/Fr is ω1-saturated for {∨,∧}-formulas ⇒ Weak
König’s Lemma.

Proof. Let Ai = N and T be an infinite binary tree. Define

ψw(x) = (‖x‖ ≥ ‖w‖ ∧ x �‖w‖= w)

and
ϕn(x) =

∨
‖w‖=n,
w∈T

ψw(x).
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Let Y = {ϕn(x) : n ∈ N} and note that we only use a countable number of
constants. We show that any finite subset Yf = {ϕn1(x), . . . , ϕn`

(x)} ⊆ Y
is satisfiable. It is enough to find a term satisfying ϕmax{ni}(x), since if a
satisfies ψw(x) with ‖w‖ = m := max{ni}, a will satisfy ψw�nj

(x) and hence
ϕnj

(x) by Lemma 4.13 and the fact that w ∈ T .
Let U ⊂ T be a subset containing 2m elements. Since U is finite, we have

∃x ∈ U(‖x‖ ≥ m) ∨ ¬∃x ∈ U(‖x‖ ≥ m). If ¬∃x ∈ U(‖x‖ ≥ m) would be
the case, each of the 2m elements in U would have length less than m. But
there are only

m−1∑
i=0

2i = 2m−1+1 − 1 = 2m − 1

elements with length less than m, so we arrive at a contradiction. Hence
there is a ∈ U with ‖a‖ ≥ m, so ψa�m(a) is satisfied and since a ∈ U ⊂ T ,
ψa�m(x) is a disjunct in ϕm(x). Thus ϕm(a) is satisfied. Using our inclusion
N ↪→

∏
N/Fr, we hence find d(a) ∈

∏
N/Fr satisfying Yf , which (under

the assumption that
∏

N/Fr is ω1-saturated for {∨,∧}-formulas) gives us a
c ∈

∏
N/Fr satisfying all of Y .

So we know
∀m
∏

N/Fr |= ϕm(c),

i.e.
∀m

∨
‖w‖=m,
w∈T

∃km∀n ≥ km
(
ψw(c(n))

)
.

Define the sequence {xi}i by xn = (c(kn))n, i.e. xn is the nth component
of c(kn). It remains to prove that 〈x0, . . . , x`〉 ∈ T for each ` ∈ N. Since
c(k`) �`∈ T for each ` ∈ N, it is enough to show that xi = (c(kj))i for each
i ≤ j and hence 〈x0, . . . , x`〉 = c(k`) �` ∈ T .

Let i ≤ j. For m = i, we know that there is a w with ‖w‖ = i such that
∃ki∀n ≥ ki

(
ψw(c(n))

)
, i.e. c(n) �i= w for all n ≥ ki. For m = j, we likewise

get a w′ with ‖w′‖ = j such that c(n) �j= w′ for all n ≥ kj. In particular,
for n = max(ki, kj), we have c(n) �i = w = c(ki) �i since n, ki ≥ ki. We also
have c(n) �j = w′ = c(kj) �j in the same way. But then (c(ki))i = (c(n))i
= (c(kj))i where the last equality holds because c(n) and c(kj) agree up to
position at least j, and i ≤ j. By the remark above, we are done.

If we modify our proof a little, we can actually prove the full König’s
Lemma:
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Theorem 4.16.
∏

i∈NAi/Fr is ω1-saturated for {∨,∧}-formulas ⇒ König’s
Lemma.

Proof. Define

Wn = {w ∗ 〈z〉 ∈ T : w ∈ Wn−1, z ≤ mw}

with W0 = {〈〉} and mw taken from definition 4.12(iii). Note that Wn is
decidable with definition 4.12(i) and replace ϕn with

ϕ′n(x) =
∨

w∈Wn

ψw(x).

We conclude that there can be no constructive proof of a general version
of Theorem 4.7, since this then would imply LLPO by Theorem 4.16 together
with Theorem 4.14. We can, however, say more:

Theorem 4.17. Under the assumption that all decreasing sequences of in-
ternal sets consisting of realizers of subgeometric formulas are strongly de-
creasing, we have:∏

i∈NAi/Fr is ω1-saturated for geometric formulas in a countable language
⇐⇒ König’s Lemma.

Proof. (⇒) is clear by Theorem 4.16. For (⇐), we follow ideas from [Pal92].
Assume that König’s Lemma holds. Let Σ(x) = {ϕ0(x), ϕ1(x), . . .} be a
finitely satisfiable set (Σ(x) is countable since the language is), and define
Gn = {x ∈

∏
Ai/Fr :

∏
Ai/Fr |= ϕ0(x) ∧ . . . ∧ ϕn(x)}. Then G0 ⊇ G1 ⊇ . . .

is a decreasing sequence of inhabited sets.
Each geometric formula can be written as a disjunction of subgeometric

formulae, so each Gn can be written as a union of internal sets (possibly in
different ways) – this is called a splitting. We will inductively define inhabited
internal sets In,j (0 ≤ j ≤ ν(n)) so that Gn = In,0 ∪ . . . ∪ In,ν(n) and each
In+1,j is included in some In,k.

Let G0 = I0,0 ∪ . . .∪ I0,ν(0) be any splitting. Suppose that we have found
splittings Gn = In,0 ∪ . . . ∪ In,ν(n) satisfying the conditions for n ≤ m. Let
Gm+1 = Jm+1,0 ∪ . . . ∪ Jm+1,ν′(m+1) be a splitting of Gm+1, and construct a
new splitting

Gm+1 =
⋃

0≤i≤ν(m)
0≤j≤ν′(m+1)

Im,i ∩ Jm+1,j

(see figure 2 for a more intuitive picture). This really is a splitting of Gm+1

since Gm+1 ⊆ Gm. Every Im,i ∩ Jm+1,j is an intersection of internal sets and
thus an internal set, and Im,i ∩ Jm+1,j ⊆ Im,i by construction.
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Im,0 Im,1 Im,2 Im,3

Jm+1,0 Jm+1,1 Jm+1,2 Jm+1,3

Im+1,0 Im+1,2 Im+1,4
Im+1,6

Figure 2: How to construct Im+1,0∪ . . .∪ Im+1,ν(m+1) from Im,0∪ . . .∪ Im,ν(m) and
Jm+1,0 ∪ . . . ∪ Jm+1,ν′(m+1)

Now, the branchings among the In,j define a finitely branching tree T .
Since each Gn is inhabited, T has a branch of length n for every n ∈ N and
thus an infinite branch by König’s Lemma. But this infinite branch (In,jn)∞n=0

is a decreasing sequence of internal sets (strongly decreasing by assumption),
so Theorem 4.11 applies and gives us an element [y] ∈ ∩nIn,jn ⊆ ∩nGn, i.e.∏
Ai/Fr is ω1-saturated.
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5 Some Constructive Non-standard Analysis
Now, let us do some constructive non-standard analysis to see what can be
done with the tools we have developed. We will once again eventually see
what can’t be done by constructing certain Brouwerian counterexamples.

As our non-standard model, we will take a Fréchet power of the real
numbers, where we assume that our language has a sufficient amount of
function symbols and constants as usual. The main tool is Theorem 4.3, here
restated for our situation with the filter base Fr = {N \ {0, . . . , n} : n ∈ N}:

Theorem 5.1. Let R+ =
∏

i∈N R/Fr be the Fréchet power of R.

(i) If ϕ is constructive Horn (i.e. ϕ is built up from atomic formulas and
∧, ∀, ∃, ϕ1 → ϕ2 where ϕ1 is geometric), then

(∃k)(∀n ≥ k) R |= ϕ(a(n)) =⇒ R+ |= ϕ(a)

(ii) If ϕ is geometric (i.e. ϕ is built up from atomic formulas and ∧, ∨, ∃),
then

R+ |= ϕ(a) =⇒ (∃k)(∀n ≥ k) R |= ϕ(a(n))

One has to be a bit careful with R+. On the one hand, almost all basic
standard results on the arithmetic of the real numbers can be lifted to R+,
since they can be formulated as constructive Horn formulas (∀x

(
x+ 0 = x

)
,

∀x
(
x > 0→ ¬(x < 0)

)
etc). On the other hand, R+ is not even a field, since

[(0, 1, 0, 1, . . .)] · [(1, 0, 1, 0, . . .)] = [(0, 0, . . .)] = 0, i.e. R+ has zero divisors.
This is because the sentence expressing that every non-zero element has a
multiplicative inverse (∀x

(
¬
(
x = 0

)
→ ∃y

(
x · y = 1

))
) can not be expressed

as a constructive Horn formula.

Definition 5.2. Let a, b ∈ R+.

(i) a is finite, if there is k ∈ R such that |a| < k.

(ii) a is infinite, if for all k ∈ R, k < |a|.

(iii) a is infinitesimal, if for all real k > 0, |a| < k.

(iv) a and b are infinitely close, a ' b, if a− b is infinitesimal.
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Let us start with some well-known non-standard characterizations of
properties of sequences of real numbers.

Definition 5.3. Let (xn)∞n=0 be a sequence in R.

(i) (xn) → L ∈ R if for all real ε > 0 there is k ∈ N such that |xn − L| < ε
for all n ≥ k.

(ii) L ∈ R is a limit point of (xn) if for all real ε > 0 and all k ∈ N there is
a n ≥ k such that |xn − L| < ε.

(iii) (xn) is bounded if there is k ∈ R such that |xn| < k for all n ∈ N.

Theorem 5.4. Let (xn)∞n=0 be a sequence in R.

(i) (xn) → L ∈ R if and only if xµ ' L for all infinite µ.

(ii) L ∈ R is a limit point of (xn) if and only if xµ ' L for some infinite µ.

(iii) (xn) is bounded if and only if xµ is finite for all infinite µ.

Proof. (i) (⇒) Assume (∀ε > 0)(∃k)(∀n ≥ k)
(
|xn − L| < ε

)
in R. We

have to show that |xµ − L| < k for all standard k > 0 and all infinite µ.
Let k > 0 and µ be given. We have (∀n ≥ `)

(
|xn − L| < k

)
for some

` ∈ N. This is a constructive Horn formula, and can thus be lifted with
Theorem 5.1(i), giving (∀n ≥ `)

(
|xn − L| < k

)
. But µ ≥ ` since µ is

infinite, so |xµ − L| < k and xµ ' L.

(⇐) If xµ ' L for all infinite µ, we in particular have xΩ ' L, where
Ω = [λn.n], i.e. |xΩ| < k for all positive k ∈ R. For each such
k, we can use the downward transfer from Theorem 5.1(ii), and get
(∃`)(∀n ≥ `) |xn| < k, i.e. (xn)→ L.

(ii) (⇒) Suppose that (∀ε > 0, k ∈ N)(∃n ≥ k) |xn − L| < ε. This can be
lifted, giving (∀ε > 0, k ∈ N+)(∃n ≥ k) |xn − L| < ε. For ε infinitesimal
and k infinite, we get a µ ≥ k (so µ is infinite), with |xµ − L| < ε,
hence |xµ − L| < ` for all standard ` > 0 (since ε < ` for all such `),
i.e. xµ ' L.

(⇐) Suppose that |xµ − L| < ` for all standard ` > 0. Let standard
ε > 0 and k ∈ N be given. Downward transfer applied to ϕ(a) ≡
|xa − L| < ε gives a k′ such that

∣∣xµ(i) − L
∣∣ < ε for all i ≥ k′. Since µ

is infinite, we must have µ(i) > k for some i ≥ k′, so that |xn − L| < ε
holds for n = µ(i) for this i.
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(iii) (⇒) Suppose that |xn| < k for a k ∈ R. Lifting this gives
∀n ∈ N+

(
|xn| < k

)
, so in particular, this holds for all infinite n.

(⇐) If |xµ| < k, with k ∈ R, for all infinite µ, we in particular
have |xΩ| < k, where Ω = [λn.n]. Transfer downwards now gives
(∃`)(∀n ≥ `)

∣∣xΩ(n)

∣∣ < k, i.e. |xn| < k for all n ≥ `, so (xn) is bounded
by max{|x0| , |x1| , . . . , |x`−1| , k}.

In the proof, we see that some properties hold for all infinite numbers
as soon as they hold for Ω = [λn.n]. We make this precise in the following
theorem.

Theorem 5.5. Let P (n) be a subgeometric formula. Then R+ |= P (Ω) if
and only if R+ |= P (µ) for all infinite µ.

Proof. (⇐) is obvious, since Ω is infinite.
(⇒) Suppose R+ |= P (Ω). By downward transfer, we then have a stan-

dard k such that R |= P (n) for all n ≥ k. Let µ be infinite. Then, in
particular, µ > k, so there is an ` such that µ(i) > k for all i ≥ `. We thus
have R |= P (µ(i)) for all i ≥ `, so by lifting we get R+ |= P (µ).

We now turn to functions.

Definition 5.6. Let X ⊆ R. A mapping f : X → R is uniformly continuous,
if for each ε > 0 there exists a δ > 0 such that |x− y| < δ⇒ |f(x)− f(y)| < ε
for all x, y ∈ X.

The following is also well-known:

Theorem 5.7. f : X → R is uniformly continuous ⇒ ∀x, y ∈ X+(
x ' y ⇒ f(x) ' f(y)

)
.

Proof. Assume that f is uniformly continuous, and that x ' y. Let a stan-
dard ε > 0 be given. Since f is uniformly continuous, there is a standard
δ > 0 such that (∀z, w ∈ X)

(
|z − w| < δ ⇒ |f(z)− f(w)| < ε

)
holds

in R. By lifting, this also holds in R+. Since x ' y, |x− y| < δ and thus
|f(x)− f(y)| < ε. Since ε was arbitrary, f(x) ' f(y).

Classically, the converse also holds. We will now construct a Brouwerian
counterexample, showing that this is not possible in BISH, however true in
INT and RUSS.

Definition 5.8. Let X ⊆ R. A mapping f : X → R is uniformly sequentially
continuous, if xn − yn → 0 ⇒ f(xn)− f(yn)→ 0 for all sequences (xn), (yn)
in X.
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Theorem 5.9. Let f : X → R be a standard function. Then ∀x, y ∈ X+(
x ' y ⇒ f(x) ' f(y)

)
⇔ f : X → R is uniformly sequentially continuous.

Proof. (⇒) Let (xn), (yn) be sequences in X and assume xn − yn → 0. By
Theorem 5.4(i), we then have xµ − yµ ' 0, i.e. xµ ' yµ for all infinite µ. By
the assumption, we then have f(xµ) ' f(yµ), hence f(xn)− f(yn)→ 0 again
by Theorem 5.4(i), so f is uniformly sequentially continuous.

(⇐) Let x ' y, where [x], [y] ∈ X+. By downward transfer (of the
formula ϕ(a) ≡ a ∈ X, where we have “∈ X” in the language), there is a
k ∈ N such that x(n), y(n) ∈ X for all n ≥ k. Let x′, y′ be modifications
of x and y so that x′(n) = x(n) for n ≥ k and x′(n) is an arbitrary fixed
element in X for n < k, and analogously for y′. Then [x′] = [x], [y′] = [y],
and (x′(n))n, (y′(n))n are sequences in X. Since x′ ' y′, x′(n) − y′(n) → 0,
so by the assumption, f(x′(n)) − f(y′(n)) → 0. Hence f(x′(µ)) ' f(y′(µ))
for all infinite µ, and f(x) ' f(y).

Thus, if we had “f uniformly sequentially continuous =⇒ f uniformly
continuous”, the converse of Theorem 5.7 would also hold. We will however
show that this statement is equivalent to BD. First we need two lemmas
from [Ish92]:

Lemma 5.10. Let A be an inhabited pseudobounded subset of N. Then there
exists a complete subset X ⊆ R and a uniformly sequentially continuous
function f : X → {0, 1} such that

0 ∈ X ∧ f(0) = 0 ∧ ∀m
(
m ∈ A⇒ 2−m ∈ X ∧ f(2−m) = 1

)
.

Proof. Let Z := {0} ∪ {2−m : m ∈ A}, and construct g : Z → {0, 1} such
that

∀p ∈ Z
(
(g(p) = 0⇒ p = 0) ∧ (g(p) = 1⇒ ∃m ∈ A(p = 2−m))

)
.

Then Z and g satisfies

0 ∈ Z ∧ g(0) = 0 ∧ ∀m
(
m ∈ A⇒ 2−m ∈ Z ∧ g(2−m) = 1

)
,

but Z probably isn’t complete. Let X be the completion of Z, i.e. X consists
of Cauchy sequences of elements of Z, with two sequences being equal if they
tend to each other.

Note that for each p, q ∈ Z and n ∈ N,

(∗) if g(p) 6= g(q) and |p− q| ≤ 2−n then there is m ∈ A with m ≥ n:
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without loss of generality, assume that g(p) = 0 and g(q) = 1. Then p = 0
and q = 2−m for some m ∈ A, and 2−m = q = |0− q| = |p− q| ≤ 2−n, so
m ≥ n.

We show that g can be extended to X. For (pn)∞n=0 ∈ X, construct a
strictly increasing sequence (Nn)n in N such that for all n ∈ N, if i, j ≥ Nn

then |pi − pj| < 2−n (this is possible since (pn) is Cauchy). Then construct
a binary sequence (αn) such that

αn = 0⇒ ∀i, j
(
Nn ≤ i, j < Nn+1 ⇒ g(pi) = g(pj)

)
αn = 1⇒ ∃i, j

(
Nn ≤ i, j < Nn+1 ∧ g(pi) 6= g(pj)

)
(3)

Let a ∈ A, and define a sequence (mn) in A as follows: if αn = 0, let
mn := a. Otherwise, if αn = 1, let i, j be such that Nn ≤ i, j < Nn+1 and
g(pi) 6= g(pj) (possible by (3)). Since Nn ≤ i, j, |pi − pj| ≤ 2−n and (∗)
gives a m ∈ A with m ≥ n. Let mn := m. Since (mn) is a sequence in A,
which is pseudobounded, there is a ν such that mn

n
< 1 for all n ≥ ν. For

each n, we have αn = 0 ∨ αn = 1. Assume αn = 1 for some n ≥ ν. Then
mn ≥ n, so that 1 > mn

n
≥ n

n
= 1, i.e. 1 > 1, a contradiction. Thus αn = 0

for all n ≥ ν. Hence the sequence (g(pn))n is Cauchy, and we can define
f(x) = f((pn)n) := (g(pn))n. It is clear that f extends g.

It remains to prove that f is well-defined. Let x = (pn)n and y = (qn)n
with x = y. Since f(z) = 0∨f(z) = 1 for all z, we have f(x) = f(y)∨f(x) 6=
f(y). Suppose that f(x) 6= f(y). Then there is ν such that g(pn) 6= g(qn)
for all n ≥ ν. Since x = y, |p2n+1 − q2n+1 | ≤ 2−n for all n, so (∗) gives a
sequence (`n) in A with `n ≥ n for all n with 2n+1 ≥ ν. But then lim `n

n
6= 0,

which is impossible since A is pseudobounded. Hence f(x) = f(y) and f is
well-defined.

Finally, we prove that f is uniformly sequentially continuous. Let (xn)∞n=0

and (yn)∞n=0 be sequences in X with xn − yn → 0. Construct a strictly
increasing sequence (Mn)∞n=1 in N and a binary sequence (βn)∞n=0 as above so
that ∀k ≥Mn

(
|xk − yk| < 2−n

)
and

βn = 0⇒ ∀k
(
Mn ≤ k < Mn+1 ⇒ f(xk) = f(yk)

)
βn = 1⇒ ∃k

(
Mn ≤ k < Mn+1 ∧ f(xk) 6= f(yk)

)
holds for all n. Let a ∈ A and define a sequence (sn) in A as follows: if βn = 0,
set sn := a. If βn = 1, there is k with Mn ≤ k < Mn+1 and f(xk) 6= f(yk).
Choose p, q ∈ Z such that |p− q| < 2−n and g(p) = f(xk) 6= f(yk) = g(q).
Then (∗) gives am ∈ A withm ≥ n. Set sn := m. Since A is pseudobounded,
there is N such that sn

n
< 1 for all n ≥ N . Hence βn = 0 for all n ≥ N , and

thus f(xk) = f(yk) for all k ≥MN , i.e. f(xn)− f(yn)→ 0.
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Lemma 5.11. Let f : X → R be uniformly sequentially continuous. Then
for each ε > 0 there exists an inhabited pseudobounded subset A ⊆ N such
that

∀m > 0
(
∃x, y ∈ X(|x− y| < 1/m ∧ |f(x)− f(y)| > ε)⇒ m ∈ A

)
.

Proof. For each ε > 0, let

A = {0} ∪ {m > 0: ∃x, y ∈ X(|x− y| < 1/m ∧ |f(x)− f(y)| > ε)},

and let (sn)∞n=1 be a sequence in A. For each δ > 0, construct a binary
sequence (λn) such that for each n,

λn = 0⇒ sn
n
< δ

λn = 1⇒ sn
n
>
δ

2

Let z ∈ X. Construct two sequences (xn), (yn) in X as follows: if λn = 0,
let xn := yn := z. Otherwise, λn = 1 and sn > nδ/2 > 0, so by the definition
of A, there is x, y ∈ X such that |x− y| < 1/sn and |f(x)− f(y)| > ε. Let
xn := x and yn := y. Now xn − yn → 0: if λn = 0, |xn − yn| = |z − z| =
0 < 2

δn
, and if λn = 1, |xn − yn| < 1/sn <

2
δn
→ 0. Since f is uniformly

sequentially continuous, there exists ν such that |f(xn)− f(yn)| < ε for all
n ≥ ν. Suppose that λn = 1 for some n ≥ ν. Then |f(xn)− f(yn)| > ε by
the construction of (xn), (yn), which is a contradiction. Thus λn = 0 for all
n ≥ ν and sn/n < δ for all n ≥ ν, i.e. A is pseudobounded.

Theorem 5.12 (Hajime Ishihara [Ish92]). The following is equivalent:

(i) Every uniformly sequentially continuous function f : X → R is uni-
formly continuous.

(ii) Every uniformly sequentially continuous function f : X → R, where
X ⊆ R is complete, is pointwise continuous.

(iii) BD.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) Let A ⊆ N be pseudobounded. By Lemma 5.10, there exists

a complete subset X ⊆ R and a uniformly sequentially continuous function
f : X → {0, 1} such that

0 ∈ X ∧ f(0) = 0 ∧ ∀m
(
m ∈ A⇒ 2−m ∈ X ∧ f(2−m) = 1

)
.
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As f is pointwise continuous, by assumption, there exists N such that for all
x ∈ X, if |x− 0| < 2−N , then |f(x)− f(0)| = |f(x)| < 1. For every m ∈ A,
we have m ≤ N ∨m > N since < is decidable on N. Suppose that m > N
for some m ∈ A. Then 2−m ∈ X and 0 < 2−m < 2−N , so 1 = f(2−m) but
also f(2−m) < 1, i.e. 1 < 1, a contradiction. Hence m ≤ N for all m ∈ A
and A is bounded, so BD holds.

(iii)⇒ (i) Let f : X → R be uniformly sequentially continuous. We want
to show that f is uniformly continuous, so let ε > 0 be given. By Lemma
5.11, there is a pseudobounded A ⊆ N such that

∀m > 0
(
∃x, y ∈ X(|x− y| < 1/m ∧ |f(x)− f(y)| > ε)⇒ m ∈ A

)
.

By assumption A is bounded, i.e. there exists N such that m < N for all
m ∈ A. Let x, y ∈ X with |x− y| < 1/N . Suppose that |f(x)− f(y)| > ε.
Then N ∈ A, and hence N < N , a contradiction. Thus |f(x)− f(y)| ≤ ε
and f is uniformly continuous.

We get the following result for the converse of Theorem 5.7.

Theorem 5.13. The following is equivalent:

(i) f : X → R is uniformly continuous ⇔ ∀x, y ∈ X+
(
x ' y ⇒ f(x) '

f(y)
)
.

(ii) BD.

Proof. “⇒” of (i) always holds by Theorem 5.7, and “⇐” of (i) is equivalent
to (ii) by Theorem 5.12.

Corollary 5.14.

f : X → R is uniformly continuous ⇔ ∀x, y ∈ X+
(
x ' y ⇒ f(x) ' f(y)

)
holds in CLASS, INT and RUSS, but not in BISH.

Proof. By Theorems 3.29, 3.30, 3.31 and 3.28, BD holds in CLASS, INT
and RUSS but not in BISH.
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