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Abstract
We investigate containers and polynomial functors in Quantitative Type Theory, and give initial
algebra semantics of inductive data types in the presence of linearity. We show that reasoning by
induction is supported, and equivalent to initiality, also in the linear setting.
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1 Introduction

Data types are the basic building blocks of modern type theories and programming languages.
Having more powerful data types around can increase the proof-theoretic strength of the
theory [34], i.e., allow more programs to be written, and can also make existing proofs/pro-
grams more convenient to write [13]. Recent advances in type theories such as cubical type
theory [11] have also been accompanied by advances in data type theory, such as quotient and
higher inductive types [5, 12, 30]. In this paper, we explore what a corresponding notion of
(non-higher, so far) inductive types for the also recently introduced type theory Quantitative
Type Theory (QTT) [6, 31] might be. QTT combines dependent types and linear types, in
the sense of linear logic [20, 37]. By using linearity to track variable (and hence resource)
usage of programs, QTT thus promises to enable formal reasoning about both functional
and non-functional correctness of programs. A variant of QTT is implemented in the Idris
2 programming language [8], and we hope that our work can be used as a foundational
justification for the implementation of data types there. Conversely, we have used Idris 2 to
mechanically verify parts of our development.

In a linear world, there are exciting new data types to explore, such as binary trees where
only one subtree at each node is present at runtime. Such trees could be used to reduce
memory usage and network traffic, or to accurately model the situation at hand. For example,
if the tree represents an I/O program in the sense of Hancock and Setzer [22], where subtrees
stand for continuation computations, then we would like to ensure that indeed only one
continuation is invoked — we do not want the user to simultaneously launch the nukes, and
refrain from doing so, by exploring two different subtrees!

While it would be possible to add such data types to QTT by manually writing down
formation, introduction, elimination and computation rules for them in an ad-hoc fashion,
this is a cumbersome and error-prone process. The goal of this paper is to present a more
principled solution. We would like to derive the rules for data types from some kind of
canonical rules. Our instinct is to turn to the theory of polynomial functors [18, 19], also
known as containers [1]. These specify data types as given by shapes and positions, with
a data value given by choosing a shape, and then filling every position of the data type
with a payload. Pleasingly, containers are closed under many constructions on types such
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as products and coproducts, and so all strictly positive data types can be reduced to (fixed
points of) containers in “traditional” type theory [2, 15, 25].

Hence we present a quantitative version of containers, replacing dependent pair types
with dependent tensor types, and function spaces with linear function spaces. Fixed points
of such containers now more or less immediately admit formation and introduction rules for
their corresponding data types, but what about the elimination and computation rules? Our
main technical contribution is to show that the problem of providing an elimination rule
for fixed points of such containers can be reduced to the problem of proving initiality in a
category of algebras. For traditional data types, this is well known [23, 7], and our proof is a
linear refinement of the traditional proof — pairs with “unused” first components play a key
role in the construction.

Is that the end of the story? Unfortunately not! Ordinary containers are useful as
a foundation for data types in traditional type theory exactly since all strictly positive
data types can be reduced to them. However when we try to replicate this reduction for
quantitative data types, we hit a snag: in the quantitative setting, it is no longer the case
that every strictly positive type is isomorphic to a quantitative container, because of the
splitting up of connectives into additive and multiplicative variants. Quantitative containers
still serve as an instructive special case of quantitative data types, but they do not cover
every interesting example. Instead, we define quantitative polynomial functors as inductively
generated from a grammar containing constants, the identity, and sums and products. We
can show that also for this class of functors, elimination rules are supported if and only
if the algebra is initial. The proof is similar to the proof for quantitative containers, but
now further complicated by having to also do induction on the generation according to the
polynomial functors grammar.

Our second major contribution is to show that finitary polynomial functors indeed have
initial algebras in Atkey’s linear realisability model of QTT [6, § 4]. This is a model where
types are interpreted as assemblies, i.e., sets whose elements are assigned realisers from a
combinatory algebra of (untyped) linear programs. We construct the initial algebras in two
stages: first we consider the initial algebra of the polynomial functor in the category Set,
which is known to exist. We then use the initiality of the algebra in Set to both define the
realisability relation, and to prove that the algebra map and mediating morphism into other
algebras are realised — this constructs an initial algebra also in the category of assemblies.
Putting our contributions together, we have thus defined a syntactic class of polynomial data
types, and shown that QTT extended with rules for them, including dependent elimination
rules, can be soundly interpreted in Atkey’s realisability model.

Structure of the paper

In Section 2, we recall the syntax and semantics of QTT, including a sketch of a realisability
model. In Section 3, we review the traditional theory of initial algebras and containers. We
then move from containers to quantitative containers in Section 4, and prove that initiality
is equivalent to dependent elimination for them. In Section 5, we generalise quantitative
containers to inductively generated quantitative polynomial functors, and show that also for
them, initiality is equivalent to dependent elimination. We finally construct initial algebras
of finitary quantitative polynomial functors in the aforementioned realisability model.
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Partial Idris 2 formalisation

We have formalised the basic definitions and results from Section 4 and Section 5 in Idris
2, most notably including a verification of Theorem 16 and the induction-from-initiality
direction of Theorem 26. We make use of Idris 2’s implementation of linearity to faithfully
model quantitative containers and quantitative polynomial functors, and to verify that the
morphisms we construct, such as distF from Lemma 24, really are linear. It was helpful to
have Idris 2 guide us by the quantity information during the construction of the proofs —
for example, feedback from Idris 2 made us realise the correct definition of lifting of constant
functors in Definition 20.

The code can be found at https://github.com/g-nakov/quantitative-poly.

2 Quantitative Type Theory

In this section, we give a brief introduction to the syntax and semantics of QTT, and present
the typing rules for the type formers we will use. For a detailed presentation, see Atkey [6].
In contrast to dependent linear/non-linear type theories [9, 29], QTT maintains a single
context in which variables can both contribute to type formation, and be marked as a linear
resource. This is in line with recent work by Fu, Kishida and Selinger [17], and Abel and
Bernardy [3]. See also Choudhury, Eades III, Eisenberg and Weirich [10], and Orchard,
Liepelt and Eades III [32] for similar approaches.

2.1 Syntax of Quantitative Type Theory
The main difference between quantitative and ordinary type theory is that variables in
quantitative type theory contexts are annotated with resources, intuitively governing how
many times they can be used. These resource annotations are drawn from a semiring,
satisfying some additional axioms that are needed for the typing rules to make sense.

▶ Definition 1. A resource semiring is a structure R = ⟨R, +, ·, 0, 1⟩, such that ⟨R, +, 0⟩ is
a monoid, ⟨R, ·, 1⟩ is a commutative monoid, with · distributing over +, such that for every
ρ, π ∈ R, ρ · π = 0 if and only if ρ = 0 or π = 0, and such that ρ + π = 0 implies ρ = π = 0.

Examples of resource semirings are given by the natural numbers with ordinary addition
and multiplication, and the “zero-one-many” resource semiring ⟨{0, 1, ω<}, +, ·, 0, 1⟩ with
x + ω< = ω< + x = ω<, 1 + 1 = ω<, and ω< · ω< = ω<.

Fixing a semiring R, a QTT term judgement has the following form:

x1
π1: S1, x2

π2: S2, . . . xn
πn: Sn ⊢ M

σ: T

with πi ∈ R and σ restricted to either σ = 0R or σ = 1R. The list of variables xi on the left
of the turnstile forms the context of the judgement. The resource semiring operations can be
lifted pointwise to contexts:

π(Γ, x
ρ: S) = πΓ, x

πρ: S

(Γ1, x
ρ1: S) + (Γ2, x

ρ2: S) = (Γ1 + Γ2), x
ρ1+ρ2: S, if 0Γ1 = 0Γ2.

In typical dependent type theory fashion, the variables xi are available for forming both
types and terms. Each variable xi is annotated with a resource πi denoting how many times
xi must be used computationally in the term M on the right hand side of the turnstile. In
contrast, the calculus is set up so that types are always formed in contexts of the form 0Γ —
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9:4 Quantitative Polynomial Functors

0Γ ⊢ I : Type 0Γ ⊢ ⊤ : Type 0Γ ⊢ 0 : Type

0Γ ⊢ ⋆ : I
0Γ1, x

0: I ⊢ S : Type Γ1 ⊢ m : I Γ2 ⊢ n : S[⋆/x]
Γ1 + Γ2 ⊢ let ⋆ = m in n : S[m/x] Γ ⊢ ⋆ : ⊤

Γ ⊢ m : 0
Γ ⊢ abort m : B

Figure 1 Type formation and rules for basic types

type formation consume no resources. The distinction between computational and “vacuous”
usage is marked explicitly by the annotation σ on the term M in the conclusion, which
can only be 0 or 1. Such a restriction is needed to retain admissibility of substitution and
effectively splits the theory in two fragments. Terms in the 0 fragment bear no computational
content, consume no resources, and are available at any point in a derivation, while the
inhabitants of the 1 fragment are computationally relevant, but need sufficient resources to
be constructed. The following meta-result, which states that “zero needs nothing”, is useful
for constructing derivations in the 0 fragment, basically without worrying about resource
usage:

▶ Lemma 2 (Atkey [6]). If Γ ⊢ M
0: S, then Γ = 0Γ. ◀

From now on, we follow the following conventions: Types are formed in the 0 fragment,
but we may omit the 0 annotation, that is, we may write 0Γ ⊢ S : Type for 0Γ ⊢ S

0: Type.
Any other judgement takes place in the 1 fragment, unless explicitly annotated otherwise,
and we suppress the annotation on the conclusion — that is, Γ ⊢ M : S should be read as
Γ ⊢ M

1: S. Scaling the context by 0 yields the corresponding rule in the 0 fragment. We
further assume that contexts are well formed; for example, we only consider the context
Γ1 + Γ2 if 0Γ1 = 0Γ2.

As an example, consider the type family Fin : N → Type of finite types. It has formation
rule

0Γ ⊢ n
0: N

0Γ ⊢ Fin(n) : Type

where we ask for 0 copies of n : N, since this n occurs in a type. The introduction rules are

0Γ ⊢ n
0: N

0Γ ⊢ zero : Fin(n + 1)
0Γ ⊢ n

0: N Γ ⊢ m : Fin(n)
Γ ⊢ suc(m) : Fin(n + 1)

where again n : N does not require any resources, since it occurs only in a type. We omit the
elimination rule here, since we will not make use of it further. Rules for other basic types
can be found in Figure 1; the type I was considered by Atkey [6, §2.1.3], whereas ⊤ and 0
are first described for QTT here. The monoidal unit type I contains no information, and
hence it is always possible to construct an element ⋆ : I at no cost, or use the elimination
rule to discard such an element. The terminal type ⊤ superficially looks very similar to the
monoidal unit I, but note that it is possible to construct ⋆ : ⊤ (we reuse the same syntax
⋆ for the term as for I) even in non-zero contexts, which makes it terminal. There is no
elimination rule. Dually the empty type 0 allows elimination into any other type.

Rules for type formers are given in Figure 2; (x ρ: S) ⊗ T and (x ρ: S) → T were considered
by Atkey, and (x : S) & T was introduced by Svoboda [35], whereas S ⊕ T is new to QTT, as
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0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x ρ: S) → T : Type
Γ, x

ρ: S ⊢ t : T

Γ ⊢ λx. t : (x ρ: S) → T

Γ1 ⊢ f : (x ρ: S) → T Γ2 ⊢ s : S

Γ1 + ρΓ2 ⊢ f(s) : S[s/x]

0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x ρ: S) ⊗ T : Type

Γ1 ⊢ s : S Γ2 ⊢ t : T [s/x]

ρΓ1 + Γ2 ⊢ (s, t) : (x ρ: S) ⊗ T

0Γ1, z
0: (x ρ: S) ⊗ T ⊢ U : Type Γ1 ⊢ p : (x ρ: S) ⊗ T Γ2, x

ρ: S, y
1: T ⊢ u : U [(x, y)/z]

Γ1 + Γ2 ⊢ let (x, y) = p in u : U [p/z]

0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x : S) & T : Type
Γ ⊢ s : S Γ ⊢ t : T [s/x]

Γ ⊢ (s, t) : (x : S) & T

Γ ⊢ p : (x : S) & T

Γ ⊢ proj1(p) : S

Γ ⊢ p : (x : S) & T

Γ ⊢ proj2(p) : T [proj1(p)/x]

0Γ ⊢ S : Type 0Γ ⊢ T : Type
0Γ ⊢ S ⊕ T : Type

Γ ⊢ s : S
Γ ⊢ inl s : S ⊕ T

Γ ⊢ t : T
Γ ⊢ inr t : S ⊕ T

0Γ1, z
0: S ⊕ T ⊢ U : Type Γ1 ⊢ e : S ⊕ T Γ2, x

1: S ⊢ u : U [inl x/z] Γ2, y
1: T ⊢ v : U [inr y/z]

Γ1 + Γ2 ⊢ case e of inl x ⇒ u | inr y ⇒ v : U [e/z]

0Γ ⊢ S : Type 0Γ ⊢ s
0: S 0Γ ⊢ t

0: S

0Γ ⊢ IdS(s, t) : Type
0Γ ⊢ s = t : S

0Γ ⊢ refl : IdS(s, t)
0Γ ⊢ p : IdS(s, t)
0Γ ⊢ s = t : S

Figure 2 Typing rules for type formers.

far as we know. Extra care should be taken in the rules for types with binders, as the bound
variable could potentially represent a computational resource — for example, the dependent
function type (x ρ: S) → T records how many copies ρ of its argument are needed. We write
S

ρ→ T for (x ρ: S) → T if x does not occur in T . The dependent tensor type (x ρ: S) ⊗ T is
the multiplicative linear version of the dependent pair type; it contains pairs (s, t) with ρ

copies of s and one copy of t, which must both be consumed fully in the elimination rule. We
pay special attention to that type as a key to a simpler presentation of the remaining rules.
Using the monoidal unit I, we can form an exponential type !ρS = (x ρ: S) ⊗ I and “disguise”
resource usage information within the types themselves. Thus, we avoid proliferating the
typing rules with abundant annotations while still retaining the full expressiveness of QTT.
For example, no modifications in the rules are needed to allow for arbitrarily many copies of
the second component of the tensor tuple — working with the type (x ρ: S) ⊗ (!πT ) already
achieves that.

In contrast to the dependent tensor type, the dependent additive conjunction (x : S) & T

(pronounced “with”) contains pairs (s, t) where the consumer can choose to either use s : S

TYPES 2021
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Γ ⊢ n : S[⋆/x]
Γ ⊢ let ⋆ = ⋆ in n ≡ n : S[⋆/x]

Γ1, x
ρ: S ⊢ t : T Γ2 ⊢ s : S

Γ1 + ρΓ2 ⊢ (λx. t) s ≡ t[s/x] : T [s/x]

Γ1 ⊢ s : S Γ2 ⊢ t : T [s/x] Γ3, x
ρ: S, y

1: T ⊢ u : U [(x, y)/z]
ρΓ1 + Γ2 + Γ3 ⊢ let (x, y) = (s, t) in u ≡ u[s/x, t/y] : U [(s, t)/z]

Γ ⊢ s : S Γ ⊢ t : T [s/x]
Γ ⊢ proj1(s, t) ≡ s : S

Γ ⊢ s : S Γ ⊢ t : T [s/x]
Γ ⊢ proj2(s, t) ≡ t : T [s/x]

Γ1 ⊢ s : S Γ2, x
1: S ⊢ u : U [inl x/z] Γ2, y

1: T ⊢ v : U [inr y/z]
Γ1 + Γ2 ⊢ case inl s of inl x ⇒ u | inr y ⇒ v ≡ u[s/x] : U [inl s/z]

Γ1 ⊢ t : T Γ2, x
1: S ⊢ u : U [inl x/z] Γ2, y

1: T ⊢ v : U [inr y/z]
Γ1 + Γ2 ⊢ case inr t of inl x ⇒ u | inr y ⇒ v ≡ v[t/y] : U [inr t/z]

Γ ⊢ t : ⊤
Γ ⊢ t ≡ ⋆ : ⊤

Γ ⊢ f : (x ρ: S) → T

Γ ⊢ f ≡ λx. f(x) : (x ρ: S) → T

Figure 3 β- and η-rules.

or t : T [s/x]. We write S ⊗ T for (x 1: S) ⊗ T and S & T for (x : S) & T respectively, if x does
not occur in T — these types correspond to the usual non-dependent linear logic connectives.
Finally S ⊕ T is the disjoint union of S and T ; note that both branches share the same
context Γ2 in its elimination rule. Combining with exponential types, we can recover the
more general version (!ρS) ⊕ (!πT ). We can define the type of Booleans by 2 = I ⊕ I. In
particular, this implies that the constructors false = inl ⋆ and true = inr ⋆ can be introduced
using zero resources. To facilitate formal reasoning within QTT, we also add extensional
identity types. Because of equality reflection, a term p of type IdS(s, t) does not use any
computational resources, and thus can be introduced even if the resources designated by
the terms s and t have been exhausted. We chose to an extensional identity type since they
are easier to work with, and easy to model in realisability models — in particular, with an
extensional identity type we do not need to worry about if the rules for the identity type
should be formulated multiplicatively, additively, or both. In principle one could also try
to develop QTT with an intensional flavour — linearity and identity types appear to be
orthogonal features in the type system.

Eliminators come with their expected β- and η-rules familiar from ordinary type theory,
listed in Figure 3. Note that we have only included η-rules for ⊤ and dependent function
types — all other type formers have eliminators that can be used to derive the expected
η-rules using the extensional identity type, but ⊤ does not have an eliminator, and the η-rule
for dependent function types is needed to derive function extensionality from the extensional
identity type.

These rules give types a rich algebraic structure. An isomorphism of types A ∼= B is given
by two linear functions ⊢ f : A

1→ B and ⊢ g : B
1→ A such that x

0: A ⊢ g(f(x)) = x : A

and y
0: B ⊢ f(g(y)) = y : B — using equality reflection, these equalities can also be proven

using the extensional identity type. For example, the usual currying-uncurrying isomorphism,
relating dependent functions and dependent pairs, becomes (z 1: ((x ρ: A) ⊗ B) → C) ∼=
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(x ρ: A) → (y 1: B) → C[(x, y)/z] in the QTT setting. We will make use of the following
isomorphisms.

▶ Lemma 3. For any type A, we have:

I ⊗ A ∼= A 0 1→ A ∼= ⊤ I 1→ A ∼= A 2 1→ A ∼= A & A ◀

In contrast, for example ⊤ ⊗ A ̸∼= A and (A 1→ I) ̸∼= I, intuitively because there is no way
to consume an element of ⊤, or to produce a function A

1→ I in general – this would allow
discarding elements of A. Formally, one can show that such isomorphisms do not exist by
exhibiting concrete models of QTT where they do not hold.

2.2 Semantics of Quantitative Type Theory
Categories with Families [14] (CwFs) form a sound and complete semantics for dependent type
theories, and are given by a category C (modelling contexts and substitutions), together with
a functor (Ty, Tm) : C → Fam(Set) into the category of families of sets (modelling types and
terms in a given context), and a context comprehension operation −.− : (Γ : C) → Ty(Γ) → C
(modelling context extension), with a universal property. Atkey [6] presents a refined notion
of quantitative CwF to account for QTT’s usage information in contexts, terms and types.
Intuitively, a quantitative CwF for a fixed resource semiring R is given by two categories L
and C, used to model resourced contexts and contexts in the 0 fragment, respectively. To any
resourced context corresponds a plain one, obtained by forgetting the resource annotations,
and so there should be a faithful functor U : L → C. Since the 0 fragment allows unrestricted
usage, C should be a CwF on its own. Types are always formed in the 0 fragment, so there
is no need to have a separate notion of “resourced types”, but L needs to support both
resourced context extension and resourced terms, both suitably displayed by U over their
unresourced counterparts in C. Finally, we need to ask for functors ρ(−) : L → L for each
ρ ∈ R, and (+) : L ×C L → L (where L ×C L is the pullback of U along itself), modelling
scaling and context addition, respectively.

Since quantitative CwFs are refinements of CwFs, we can construct a “trivially quantita-
tive” CwF for each ordinary CwF C by putting L = C with U = Id, and RTm = Tm. We
can also build models that actually demonstrate the distinction between computational and
non-computational use of data. Atkey [6] constructs a model based on linear realisability [24],
which we now describe, since we will make use of it in what follows. Unresourced terms will be
modelled by set-theoretic functions, while their resourced counterparts will be supplemented
with computable, linear realisers, drawn from an R-linear combinatory algebra.

▶ Definition 4. An R-linear combinatory algebra (R-LCA) consists of a set A, a binary
operation (·) : A × A → A, a family of unary operations !ρ : A → A for ρ ∈ R, and
combinators B, C, I, K, D, Wπρ, δπρ, Fρ ∈ A for every π, ρ ∈ R, satisfying the following
equations:

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y

I · x = x

K · x·!0y = x

D·!1x = x

Wπρ · x·!π+ρy = x·!πy·!ρy

δπρ·!πρx =!π!ρx

Fρ·!ρx·!ρy =!ρ(x · y)

TYPES 2021
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An R-LCA A supports booleans if there exists elements T, F ∈ A and a function case :
A × A → A, such that for all p, q ∈ A, case(p, q) · T = p and case(p, q) · F = q.

The operation · is meant to represent function application; the combinators B, C, I are used
to implement composition, exchange and identity, !ρ represents “making ρ copies”, with K, D,
Wπρ, δπρ, and Fρ implementing structural rules and reshuffling of resources — these witness
that !− : R × A → A is an action. See Abramsky, Haghverdi and Scott [4], and Hoshino [24]
for more details. Importantly, R-linear combinatory algebras are combinatorily complete:
given an expression M built from applications, elements of A, and variables, with exactly one
occurrence of the variable x, there exists an expression λ∗x.M , not containing x, such that
(λ∗x.M) · N = M [N/x]. We define the tupling of elements a1, . . . , an ∈ A using combinatory
completeness and the standard Church encoding [x1, . . . , xn] := λ∗q.q · x1 · . . . xn.

▶ Example 5. Fix R as the zero-one-many semiring {0, 1, ω<}, and let ⟨−, −⟩ : N × N → N
be a bijection, and [−] : ListN → N an encoding of finite lists of natural numbers as
natural numbers, in such a way that there is a “list membership” predicate a ∈ b and a
list concatenation a ++ b such that ai ∈ [a1, . . . , an], and [a1, . . . , an] ++[an+1, . . . , am] =
[a1, . . . , am] (with no requirements on a ∈ bs and as ++ bs when as and bs are not in
the image of [−]). Following Atkey [6, Examples 4.3, 4,6 and 4.7], who in turn followed
Hoshino [24, §5.3], we can endow the power set P(N) of N with the structure of an R-LCA
by defining the application α · β = {n | ⟨m, n⟩ ∈ α, m ∈ β}. We write [a1, . . . , aρ] for a list of
length ρ, i.e. [a1, . . . , a0] = [], [a1, . . . , a1] = [a1] and [a1, . . . , aω< ] means [a1, . . . , an] for some
n ∈ N, and we define !ρ : P(N) → P(N) by !ρα = {[a1, . . . , aρ] | ai ∈ α}. The combinators
are given by:

B = {⟨⟨m, k⟩, ⟨⟨n, m⟩, ⟨n, k⟩⟩⟩ | n, m, k ∈ N}
C = {⟨⟨m, ⟨n, k⟩⟩, ⟨n, ⟨m, k⟩⟩⟩ | n, m, k ∈ N}
I = {⟨n, n⟩ | n ∈ N}
K = {⟨n, ⟨[], n⟩⟩ | n ∈ N}
D = {⟨[n], n⟩ | n ∈ N}
Wπρ = {⟨⟨a1, ⟨a2, b⟩⟩, ⟨a1 ++ a2, b⟩⟩ | a1 = [a1,1, . . . , a1,π], a2 = [a2,1, . . . , a2,ρ], ai,j , b ∈ N}
δπρ = {⟨a1 ++ . . . ++ aπ, [a1, . . . , an]⟩ | ai = [ai,1, . . . , ai,ρ], ai,j ∈ N}
Fρ = {⟨f, ⟨a, [b1, . . . , bρ]⟩⟩|∀bi.∃c.c ∈ a ∧ ⟨c, bi⟩ ∈ f, a, f ∈ N}.

This R-LCA also supports Booleans by defining T = {1}, F = {0}.

As a final prerequisite towards constructing a realisability quantitative CwF, we recall
the definition of the category of assemblies [24, §2.3].

▶ Definition 6. Let A be an R-LCA. An assembly is a pair Γ = (|Γ|,⊨Γ), where |Γ| is
a set, and ⊨Γ is a relation ⊨Γ⊆ A × |Γ|. A morphism of assemblies from Γ to ∆ is a
function f : |Γ| → |∆|, which is realisable — there exists af ∈ A, such that a ⊨Γ γ implies
af · a ⊨∆ f(γ).

We can think of |Γ| as a set of extensional meanings, and a ⊨Γ x as saying that the “program”
a ∈ A realises the meaning of x. Usually, it is required that every γ ∈ Γ has a realiser, but
Atkey (personal communication) found the need to drop this condition due to technical
reasons in the interpretation of dependent function types. This modified notion of assemblies
and realisable functions still forms a category, using the B and I combinators to realise
composition and identities. We now have all the pieces needed to describe Atkey’s linear
realisability model of QTT.
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▶ Proposition 7. Let A be the {0, 1, ω<}-LCA described in Example 5. There is a quantitative
CwF where C = Set and L = Asm(A) the category of (modified) assemblies over A, with
U(Γ) = |Γ|. Types over ∆ are given by ∆-indexed families of assemblies. Unresourced terms
are given by set-theoretic functions, whereas resourced terms are realisable functions. Scaling of
assemblies is defined by ρ(Γ) = (|Γ|,⊨ρΓ) where a ⊨ρΓ γ if there exists b ∈ A, such that a =
!ρb and b ⊨Γ γ. Similarly context addition is defined by the realisability relation where
a ⊨Γ1+Γ2 γ if there exist b, c ∈ A, such that a = [b, c] with b ⊨Γ1 γ and c ⊨Γ2 γ.

Proof. Atkey [6, §4.2] shows that the given data forms a quantitative category with families
interpreting dependent tensor types, Booleans, and dependent function types, where the types
are interpreted as follows: for dependent tensor types, we have |(x ρ: S) ⊗ T | = {(s, t) | s ∈
|S|, t ∈ |T (s)|}, with a ⊨(x

ρ
:S)⊗T

(s, t) if there exists b, c such that a = [!ρb, c], b ⊨S s, and
c ⊨T (s) t. Booleans are interpreted using that they are supported in A. Finally dependent
function types are interpreted by |(x ρ: S) → T | = Πx:|S||T (s)| where a ⊨(x

ρ
:S)→T

f if b ⊨S s

implies a·!ρb ⊨T (s) f(s).1 We briefly sketch the interpretation for the remaining type formers
we have introduced: We have |I| = |⊤| = {⋆} and |0| = ∅, with I ⊨I ⋆ and x ⊨⊤ ⋆ for any
x ∈ A. Further we have |(x : S) & T | = {(s, t) | s ∈ |S|, t ∈ |T (s)|} and |S ⊕ T | = |S| + |T |,
with case(x, y) ⊨(x:S) & T (s, t) if x ⊨S s and y ⊨T (s) t, and [T, x] ⊨S⊕T inl s if x ⊨S s,
and similarly [F, y] ⊨S⊕T inr t if y ⊨T t — for S & T , the realisers for the projections can
choose which realiser of x and y they want, and dually for S ⊕ T , the realisers for the
injections tag themselves with a Boolean T or F so that the realiser for the eliminator knows
which case it is in. Finally the extensional identity type is interpreted as a subsingleton
|Id(s, t)| = {⋆ | JsK = JtK}, with a trivial realiser I ⊨Id(s,t) ⋆. ◀

We will use the above model to show that our proposed induction principles for data
types are sound, by interpreting them in the model.

3 Data Types in Ordinary Type Theory

In this section, we recall how data types are usually presented in ordinary type theory.

3.1 Initial Algebra Semantics
An F -algebra for an endofunctor F : C → C is a pair (A, a), where A is an object of C and
a : F (A) → A is a C-morphism. A morphism between F -algebras (A, a) and (B, b) is a map
f : A → B in C, such that f ◦ a = b ◦ F (f), i.e., the following diagram commutes:

F (A) A

F (B) B

F (f)

a

f

b

Identity morphisms in C are F -algebra morphisms, and F -algebra morphisms compose. Hence
F -algebras and their morphisms form a category. An initial F-algebra is an initial object

1 Unfortunately the proof in Atkey [6, §4.2] overlooked the need to also allow potentially unrealised
elements in |(x

ρ
: S) → T |, which is needed to achieve the curry-uncurry isomorphism for unresourced

terms in Atkey [6, Def. 3.5].
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9:10 Quantitative Polynomial Functors

in this category, that is, it is an F -algebra (A, a) with a unique morphism foldB to every
F -algebra B. We often write µF or µX.F (X) for the initial F -algebra.

Initial F -algebras model inductively defined data types: the algebra map a : F (A) → A

represents the constructors of the data type, and the unique morphism foldB : A → B gives
an “iteration principle” for defining functions out of the data type, à la pattern matching
definitions — as we will see later, this “non-dependent” elimination rule together with
uniqueness is actually equivalent to full dependent elimination for many functors F . This
equivalence makes crucial use of the extensional identity type.

Concretely, working in the category of types and functions, we can build up many data
types as initial algebras of polynomial functors, inductively generated by the following
grammar:

F, G ::= Id | ConstA | F × G | F + G | | A → F (1)

where Id is the identity functor, ConstA(X) = A, and ×, +, A → F are defined pointwise.
For example, the data type of natural numbers is the initial algebra of Const1 + Id, and the
data type of binary trees with elements of A stored at the leaves is the initial algebra of the
functor A + Id × Id. Note that all types generated by (1) are strictly positive, in the sense
that no input variable occurs to the left of an arrow. This is important for initial algebras to
exist.

3.2 Containers
Containers are based on a shapes-and-positions metaphor for data types, meant to represent
how concrete data are stored at locations in memory. For example, every list ℓ : List X can
be uniquely represented by a natural number n : N (given by the length of the list), together
with a function f : Fin n → X, which returns the elements of the list at the given position.
The number n : N represents the shape of the list, and Fin n is the type of positions of the
given shape. In general, we have:

▶ Definition 8 (Abbott, Altenkirch and Ghani [1]). A container S ◁ P is given by a type
S : Type of shapes, and a type family P : S → Type of positions. Its extension is given by
the operation JS ◁ P K : Type → Type defined by

JS ◁ P K X = (s : S) × (P (s) → X) .

More generally, containers can be presented in arbitrary locally Cartesian closed categories,
but we restrict ourselves to the category of types here. The extension of a container formalises
the intuition that an instantiation of the container is given by choosing a shape, and then a
a payload for each position. This action is functorial.

▶ Proposition 9. Let S ◁ P be a container. The extension JS ◁ P K extends to a functor
Type → Type, defined by JS ◁ P K(g) (s, f) = (s, g ◦ f). ◀

The action on morphisms evidently preserves identities and composition. We call any
functor isomorphic to one of the form JS ◁ P K a container functor. Container functors are
closed under many type formers and operations, for example:

Id ∼= J1 ◁ (λ_.1)K
ConstA

∼= JA ◁ (λ_.0)K
JS ◁ P K × JS′ ◁ P ′K ∼= J

(
S × S′) ◁

(
λ(s, s′).P (s) + P ′(s′)

)
K

JS ◁ P K + JS′ ◁ P ′K ∼= J
(
S + S′) ◁ [P, P ′] K

A → JS ◁ P K ∼= J
(
A → S

)
◁

(
λf.(a : A) × P (f(a))

)
K

(2)
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Using the above isomorphisms, one can show that any polynomial functor in the sense of
(1) can be represented as a container.

▶ Theorem 10 (Dybjer [15]). In extensional type theory, for any polynomial functor F , there
is a container SF ◁ PF such that F ∼= JSF ◁ PF K. ◀

Hence in extensional type theory, the problem of constructing initial algebras for polyno-
mial functors reduces to the problem of constructing initial algebras of containers, which are
given by Martin Löf’s W-type2. As a consequence, we can restrict our attention to containers,
that are easier to work with compared to polynomial functors, since they are not inductively
generated.

4 Quantitative Containers

Based on their success for data types in ordinary type theory, it seems reasonable to try
to generalise containers to the quantitative setting. Since categorical models of QTT are
monoidal closed rather than Cartesian closed, they are in particular not locally Cartesian
closed, and so, this is not a question of interpreting containers directly.

4.1 Quantitative Container Functors on the Category of Closed Types
and Linear Functions

Working internally in QTT, we can keep the same notion of a container S ◁ P as given by
S : Type and P : S → Type. Since types are checked in the 0-fragment, we do not need to
worry about linear uses of s : S when forming P (s) : Type. However from now on, we change
the extension of the container from using dependent pairs and functions, to using dependent
tensors and linear functions respectively:

▶ Definition 11. A quantitative container S ◁ P is given by a QTT type S : Type of shapes,
and a QTT type family P : S → Type of positions. Its extension is given by the operation
JS ◁ P K : Type → Type defined by

JS ◁ P K X = (s 1: S) ⊗ (P (s) 1→ X) .

As expected, container extensions are still functorial, if we move to the category TypeLin
of closed types and linear functions: a morphism from a type X to a type Y is given by a
function ⊢ f : X

1→ Y .

▶ Proposition 12. Let S ◁ P be a container. The extension JS ◁ P K extends to a functor
TypeLin → TypeLin, defined by JS ◁ P K(g) x = let (s, f) = x in (s, g ◦ f). ◀

The above proposition can be generalised to a category of types and functions over an
arbitrary, fixed context of the shape Γ = 0Γ, i.e. a context where all variables are annotated
with 0.

▶ Example 13. We can define the list container N ◁ Fin as before, but note that its use
is rather complicated, due to linearity constraints: to define a function out of JN ◁ FinK X,
we have to make use of both the length n and the payload function f : Fin(n) → X

exactly once. As an example, consider a slightly unusual Maybe container, given by M =

2 Recently, Hugunin [25] showed how this result can be extended also to intensional type theory.
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9:12 Quantitative Polynomial Functors

2 ◁
(
λb. if b then I else Fin 0

)
: we have two shapes, one with trivial positions (representing a

just value), and one with Fin 0 positions (representing nothing). Now we can write a function
head : JN ◁ FinK X

1→ JMK X, which given a tensor tuple (n, f) first inspects the length n; if
it is non-zero, f : Fin (n′ + 1) 1→ X and we can return just (f 0), otherwise if n = 0 we can
return f : Fin 0 1→ X itself as the payload function in the nothing case, thus using both the
length and the payload of the list. However many other plausibly linear operations on lists
can not be written with this representation — as we will see, this hints at a deficiency of the
container representation of data types in a quantitative setting.

▶ Example 14. Hancock and Hyvernat [21] suggest to think of a container Q ◁ A as an
interaction structure: the shapes Q represent questions, or commands, and the positions A

represent answers, or responses. An element of JQ ◁ AK X is thus a tuple (q, f) where q is
a question, and f : A(q) 1→ X is a linear function ready to give an element of X for every
answer to q. An initial algebra D = µX.JQ ◁ AK X of JQ ◁ AK thus intuitively consists of
wellfounded “dialogue trees” (q, f) where q : Q is a question, and f : A(q) 1→ D is a function
ready to supply a dialogue subtree for each possible answer to the question. Linearity here
means that to consume such a dialogue tree, we firstly need to consume the question, and
then we get to choose exactly one answer to the question to continue the dialogue, and so on,
until we reach a question with no answers. Similar to when modelling stateful operations [33],
linearity prevents us from “going back in time” and speculatively trying a different answer.
Dually, when constructing such a dialogue tree, the typing rules allow us to use the same
resources when constructing different subtrees — only one subtree is eventually going to be
explored anyway.

4.2 Closure Under Type Formers
Unfortunately, many of the isomorphisms in (2) do not carry over from ordinary containers to
quantitative containers, due to the bifurcation into additive and multiplicative type formers
in the linear setting.

▶ Theorem 15. The identity functor is a quantitative container, but constant functors are
not, in general.

Proof. The identity functor is represented by the quantitative container I ◁ (λ_.I), since
I ⊗ A ∼= A and I 1→ A ∼= A by Lemma 3. For showing that quantitative containers are not
closed under constant functors, note that every model of ordinary type theory is also a model
of QTT, with vacuous resource tracking [6, Prop 3.3]. Hence if ConstA

∼= JS ◁ P K, the same
isomorphism must hold if all linear type formers are replaced by their Cartesian variants in
the definition of S and P , because that would be the interpretation of the isomorphism in
a vacuous model. Further, since the extension functor J−K is full and faithful for ordinary
containers [1, Thm. 3.4], if ConstA

∼= JS ◁ P K in a vacuous model, then in that model we
must have S ∼= A and (P (s) → X) ∼= 1 by (2). Going back to the linear world, we must
hence for each s : S and type X have (P (s) 1→ X) ∼= I. In particular, for X = 0, there is a
function of type P (s) 1→ 0, which implies P (s) ∼= 0 since 0 is initial. But this absurd: since
(0 1→ X) ∼= ⊤, we then would have ⊤ ∼= I, but this isomorphism does not hold in all models.
Hence there cannot be such a quantitative container S ◁ P . ◀

It is not hard to see that quantitative containers are closed under ⊕, as the isomorphism
for + in (2) is already linear. However the isomorphisms for closure under all the other type
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formers are not, and so quantitative containers are not closed under function spaces, ⊗, or
&. This is quite a blow for their usefulness as a general framework for data types — as a
consequence, we will consider alternatives in Section 5.

4.3 Elimination Rules and Induction Principles
As we have seen in Example 14, it is sometimes helpful to consider initial algebras W of
quantitative container functors JS ◁P K. The algebra map c : JS ◁P K(W ) 1→ W corresponds to
the introduction rule of the type, and the mediating morphism into any other JS ◁ P K-algebra
B : Type corresponds to an elimination rule:

⊢ b :
(
(s 1: S) ⊗ (P (s) 1→ B)

) 1→ B

⊢ fold(B,b) : W
1→ B

with computation rule fold(B,b)(c(x)) = b(JS ◁ P K(fold(B,b)) x) given by the fact that fold(B,b)
is an algebra morphism. A priori, this only gives a non-dependent elimination rule (also
known as a recursion principle), but by exploiting the uniqueness of the mediating map,
we can also derive the following dependent elimination rule (induction principle) for any
⊢ Q : W → Type:

⊢ m : (s 1: S) → (h 0: P (s) 1→ W ) → ((p 1: P (s)) → Q[h(p)]) 1→ Q[c(s, h)]

⊢ elim(Q, m) : (x 1: W ) → Q[x] (3)

This rule says that to prove Q[x] for every x : W using one copy of x, it is enough to prove
Q[c(s, h)] for s : S and h : P (s) 1→ W , assuming Q[h(p)] already holds for every p : P (s),
using one copy of s and the induction hypothesis, but zero copies of h. A priori, it is perhaps
not completely obvious that this is the right usage annotation of the variables involved.
Indeed, a noteworthy feature of Theorem 16 below is that these annotations naturally fall
out from its proof, so that we can use it to derive the form of of the induction principle in a
principled manner in the quantitative setting.

In fact, just like in ordinary type theory, initiality and induction are actually equivalent
principles: An algebra is initial if and only if it supports induction. This result and
construction seems to have been discovered several times by several authors, for example
Dybjer and Setzer [16], Hermida and Jacobs [23], and Awodey, Gambino and Sojakova [7].
Our contribution here is to adapt the proof to also account for linearity.

▶ Theorem 16. Let (W, c : JS ◁P K(W ) 1→ W ) be an JS ◁P K-algebra. The algebra W is initial
if and only if there is a term elim(Q, m) as in (3) for every w

0: W ⊢ Q : Type, satisfying the
computation rule elim(Q, c(x)) = let (s, h) = x in m s h (λp.elim(Q, h(p))).

Proof. Assuming that (W, c) is initial and the premises of the elimination rule, we build
an JS ◁ P K-algebra on the dependent tensor type (w 0: W ) ⊗ Q, and get a unique mediating
morphism fold : W

1→ (w 0: W ) ⊗ Q by initiality. We compose with the second projection
snd : (x 1: (w 0: W ) ⊗ Q) → Q[fst(x)] to get a map (x 1: W ) → Q[fst(fold(x))]. Note that the
use of second projection is admissible due to the annotation of the first component w

0: W —
we are free to dispose of w, since it is used 0 times. To show that snd ◦ fold has the right
type, we need to show that Q[fst(fold(x))] = Q[x] for every x : W , but as this is a type
equality, unrestricted use of terms is permissible. The map fst : (w 0: W ) ⊗ Q

1→ W is an
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JS ◁ P K-algebra morphism, and thus the composite fst ◦ fold : W
1→ W is also one:

JS ◁ P K(W ) W

JS ◁ P K((w 0: W ) ⊗ Q) (w 0: W ) ⊗ Q

JS ◁ P K(W ) W

c

fold

fst

c

Thus fst◦fold = id holds by uniqueness of the mediating morphism out of W . The computation
rule is exactly that fold is an JS ◁ P K-algebra morphism.

For the converse direction, assume that the elimination rule holds for (W, c). Let
(A, f : JS ◁ P K(A) → A) be an arbitrary JS ◁ P K-algebra and define the type Q[x] := A for
all x : W . Hence the type of the method in the elimination simplifies to

m
1: (s 1: S) → (h 0: P (s) 1→ W ) → ((p 1: P (s)) → A) 1→ A

which we can define by m = λs.λh.λy.f(s, y), since we have 0 copies of h, and thus do not
need to use it. The elimination principle gives a function fold := elim(A, m) : W

1→ A, which
by the computation rule is an JS ◁ P K-algebra morphism. We show uniqueness of fold as
follows: given another JS ◁ P K-algebra morphism g : W

1→ A, we use the elimination principle
and equality reflection to prove g(x) = fold(x) for every x : W . For x of the form c(s, f), this
follows linearly from both g and fold being JS ◁ P K-algebra morphisms and the induction
hypothesis, and the result follows by equality reflection. ◀

5 Quantitative Polynomial Functors

As we have seen, quantitative containers give a seemingly well behaved notion of data types in
quantitative type theory: they are functorial, and their algebras support induction principles
if and only if they are initial, which is a property that is usually easier to verify in models.
However, there is a caveat — most quantitative versions of standard data types are not
quantitative containers in the above sense, because quantitative containers are not closed
under many type formers, as discussed in Section 4.2.

Consider, for example, the natural numbers, the initial algebra of the polynomial functor
F (X) = 1+X, or binary trees, the initial algebra of G(X) = A+X×X. Their representations
as initial algebras of containers in Theorem 10 crucially depend on the isomorphisms (0 →
X) ∼= 1 and (2 → X) ∼= X × X, respectively. If we consider the corresponding QTT data
types given by F (X) = I ⊕ X and G(X) = A ⊕ (X ⊗ X), we see using Lemma 3 that
the QTT counterparts of the above isomorphisms do not hold: (0 1→ X) ∼= ⊤ ≁= I and
(2 1→ X) ∼= X & X ̸∼= X ⊗ X.
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5.1 A Grammar for Quantitative Polynomial Functors

Since we can no longer reduce all data types we are interested in to quantitative containers,
we instead resort to generating them inductively. This follows the same pattern as for
polynomial functors in the grammar (1), except that we now have multiplicative and additive
versions of many type formers.

▶ Definition 17. The class of quantitative polynomial type expressions is inductively
generated by the following grammar:

F, G ::= Id | ConstA | F ⊗ G | F ⊕ G | F & G | A
1→ F

If the type expression is generated without making use of the A
1→ F production, we call it

finitary.

A simple induction on how the type expression is generated proves that all quantitative
polynomial type expressions are functors of type TypeLin → TypeLin. Hence we are justified
in calling them polynomial functors.

▶ Example 18. A functor describing the natural numbers is given by the finitary type
expression F = ConstI ⊕ Id. An element of F (X) is either inl ⋆, representing 0, or of the form
inr n, representing the successor of n. A function F (X) 1→ A uses no resources for the zero
case, and gets one copy of n in the successor of n case. This is different from an attempted
quantitative container representation of F , which would be given by 2◁P , where P (true) = 0
and P (false) = I, since the representation of 0 there would also have a “junk” term of type
(0 1→ X) ∼= ⊤ around.

▶ Example 19. Similarly, a finitary polynomial functor describing binary trees is given by
G = ConstA ⊕ (Id ⊗ Id). An element is either of the form inl a for some a : A, representing
a leaf with label a, or of the form inr (ℓ, r), representing a node with subtrees ℓ and r. A
function G(X) 1→ B must be able to deal with either getting one copy of a : A, or one copy
each of subtrees ℓ and r. In contrast, an attempted quantitative container representation
of G would be given by (A ⊕ I) ◁ P , where P (inl a) = 0 and P (inr ⋆) = 2. This would have
the same “junk term” problem for leaves as zero does in Example 18, but in addition, a
function J(A ⊕ I) ◁ P K 1→ B would only get access to one of the two subtrees ℓ and r. If this
is the intended use case, like in Example 14, then one can instead change the quantitative
polynomial functor to G′ = ConstA ⊕ (Id & Id).

5.2 Elimination Rules and Induction Principles

In order to consider initial algebras, a functor is all we need, but to formulate induction
principles, we now need to construct some additional machinery: we need to explain what
the type of induction hypothesis is for a given functor, and what the computation rule should
be. For quantitative containers, we could do this directly, but since quantitative polynomial
functors are inductively generated, we also need to proceed inductively. Our main tool is
the predicate lifting [23] of polynomial functors, which will be used as the type of induction
hypothesis.

▶ Definition 20. Let F be a quantitative polynomial functor. We define its predicate lifting

TYPES 2021



9:16 Quantitative Polynomial Functors

F̂ : (Q : X → Type) → (F (X) → Type) by induction on F :

Îd(Q, x) = Q(x)

ĈonstA(Q, x) = (a 1: A) ⊗ (a = x)

F̂ ⊗ G(Q, x) = F̂ (Q, proj1 x) ⊗ Ĝ(Q, proj2 x)

F̂ ⊕ G(Q, x) = ((x1
0: F (X)) ⊗ (p 1: x = inl x1) ⊗ F̂ (Q, x1)) ⊕

((x2
0: G(X)) ⊗ (p 1: x = inr x2) ⊗ Ĝ(Q, x2))

F̂ & G(Q, x) = F̂ (Q, proj1 x) & Ĝ(Q, proj2 x)

Â
1→ F (Q, x) = (a 1: A) → F̂ (Q, x(a)).

The lifting follows the same structure as the underlying functor. Note that we can use
projections proji := λx. let (x1, x2) = x in xi in the F ⊗ G case, as we are defining a type,
and hence we are in the 0 fragment. The only possibly surprising case is the lifting of constant
functors ĈonstA(Q, x) = (a 1: A) ⊗ (a = x); in a non-quantitative setting, this would be a
complicated way to define ĈonstA(Q, x) = 1, since, in the language of homotopy type theory,
singletons (a : A) × (a = x) are contractible [36, Lem. 3.11.8]. However the point is that we
get one “extra” copy a of x which can be used even when we have zero copies of x available.
This is crucial for the proof of Lemma 24 below.

We will use predicate liftings to formulate the notion of induction hypothesis for F -
algebras for a quantitative polynomial functor F . For formulating computation rules, we will
furthermore make use of the following lemma, which states that each predicate lifting has a
“functorial action” on dependent functions:

▶ Lemma 21. Let F be a quantitative polynomial functor. If f : (x 1: X) → Q(x) then we
can define F̂ (f) : (y 1: F (X)) → F̂ (Q, y). In addition, if g : Y

1→ X, then F̂ (Q, F (g)(y)) =
F̂ (Q ◦ g, y), and F̂ (f ◦ g) = F̂ (f) ◦ F (g). ◀

The proof is again a simple induction on the buildup of F . Since there are no identity
dependent functions or compositions of dependent functions in general for this fixed form, it
does not make sense to ask for F̂ to preserve neither identities or composition in general,
beyond the “mixed” F̂–F preservation stated in the lemma. However Lemma 25 below
implies that F̂ does preserve identities and compositions when these make sense.

We now have all the ingredients we need to define what it means for an algebra to
support elimination and computation rules. Let F be a quantitative polynomial functor, and
(W, c) an F -algebra. The dependent elimination rule (or induction principle) for W , for any
predicate ⊢ Q : W → Type, is stated as follows:

⊢ m : (y 0: F (W )) → F̂ (Q, y) 1→ Q(c(y))

⊢ elim(Q, m) : (x 1: W ) → Q(x) (4)

with computation rule elim(Q, m)(c(y)) = m y (F̂ (elim(Q, m), y)). Note how the computation
rule is making use of the action of F̂ on dependent functions from Lemma 21.

▶ Example 22. Recall from Example 18 that the quantitative polynomial functor F =
ConstI ⊕ Id describes the data type of natural numbers. The type of induction hypothesis for
zero := c(inl ⋆) is, up to isomorphism, F̂ (Q, inl ⋆) ∼= I, i.e., it contains no information, and
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the induction hypothesis for suc n := c(inr n) is isomorphic to F̂ (Q, inr n) ∼= Îd(Q, n) = Q(n),
as expected. We would thus expect the induction principle to be familiarly stated as follows

⊢ mz : Q(zero) ⊢ ms : (n 0: N) → Q(n) 1→ Q(suc n)

⊢ elim(Q, m) : (x 1: N) → Q(x)

and indeed it can be, up to isomorphism. An important point is that when translating
between m : (y 0: F (W )) → F̂ (Q, y) 1→ Q(c(y)) and mz and ms as above, we cannot make
case distinctions on y

0: F (W ), since we have zero copies of y available. Instead, we have
to split on the F̂ (Q, y) argument, which in turn will refine y. This is why the definition of
F̂ ⊕ G(Q, x) is designed the way it is, rather than just giving cases for F̂ ⊕ G(Q, inl x1) and
F̂ ⊕ G(Q, inr x2) directly.

▶ Example 23. The quantitative polynomial functor G = ConstA ⊕(Id⊗ Id) from Example 19
describes binary trees. For leaves, we have Ĝ(Q, inl x) ∼= (a 1: A) ⊗ (a = x), and for nodes we
have Ĝ(Q, inr x) ∼= Q(proj1 x) ⊗ Q(proj2 x). Hence the induction principle becomes

⊢ ml : (a 1: A) → Q(leaf a) ⊢ mn : (ℓ 0: TreeA) → (r 0: TreeA) → Q(ℓ) 1→ Q(r) 1→ Q(node ℓ r)

⊢ elim(Q, m) : (t 1: TreeA) → Q(t)

Note how the method ml gets one rather than zero copies of a : A, thanks to the definition
of Ĝ(Q, inl x) ∼= (a 1: A) ⊗ (a = x).

We now aim to show that initiality and induction are equivalent also for quantitative
polynomial functors. The proof follows the same pattern as Theorem 16, but we need some
additional lemmas. Firstly, we need that F distributes over dependent tensor products of
the form (w 0: W ) ⊗ Q in an appropriate sense:

▶ Lemma 24. For a quantitative polynomial functor F , we have

distF : F ((x 0: W ) ⊗ Q(x)) 1→ (y 0: F (W )) ⊗ F̂ (Q, y)

with proj1 ◦ distF = F (proj1) as an equation in the 0-fragment. ◀

Secondly, for deriving initiality from induction, we need that F̂ basically reduces to F for
constant predicates:

▶ Lemma 25. If Q(x) = A for every x : X, i.e., Q is constant, then F̂ (Q, y) ∼= F (A) for
every y : F (X), and F̂ (f) ∼= F (f) for every f : X

1→ A. ◀

Armed with these lemmas, we can now attack our main theorem:

▶ Theorem 26. Let F be a quantitative polynomial functor and (W, c : F (W ) 1→ W ) an
F -algebra. The algebra W is initial if and only if there is a term elim(Q, m) as in (4) for every
w

0: W ⊢ Q : Type, satisfying the computation rule elim(Q, m)(c(y)) = m y (F̂ (elim(Q, m), y)).

Proof. Assuming that (W, c) is initial, and given m : (y 0: F (W )) → F̂ (Q, y) 1→ Q(c(y)), we
construct an F -algebra

F ((x 0: W ) ⊗ Q(x)) (y 0: F (W )) ⊗ F̂ (Q, y) (x 0: W ) ⊗ Q(x)distF ⟨c,m⟩
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and by initiality, we get fold⟨c,m⟩◦distF
: W

1→ (x 0: W ) ⊗ Q(x). By Lemma 24, the following
diagram commutes, meaning that proj1 is an algebra morphism from (x 0: W ) ⊗ Q(x) to W

in the 0-fragment:

F ((x 0: W ) ⊗ Q(x)) (y 0: F (W )) ⊗ F̂ (Q, y) (x 0: W ) ⊗ Q(x)

F (W ) F (W ) W

distF

F (proj1)

⟨c,m⟩

proj1 proj1
c

Hence by uniqueness, we have proj1 ◦fold⟨c,m⟩◦distF
= id, and hence we can define elim(Q, m) =

proj2 ◦ fold⟨c,m⟩◦distF
: (y 1: W ) → Q(y). The computation rule follows from the fact that fold

is an F -algebra morphism, and the second part of Lemma 21. Conversely, using Lemma 25
we can use the induction principle on a constant predicate to get a morphism W

1→ B for
an F -algebra B. We prove uniqueness with another instantiation of the induction principle,
together with function extensionality. ◀

5.3 Initial Algebras of Finitary Quantitative Polynomial Functors in the
Realisability Model

Initial algebras of a polynomial functor F : C → C need not necessarily exist for an arbitrary
category C. When the category in question is Set, however, the initial algebra µF always
exists for polynomial functors. We show that a similar result holds for finitary quantitative
polynomial functors in the quantitative CwF from Proposition 7. We refer to that category
as the realisability model Mr .

Semantic types in Mr are interpreted by a collection of assemblies. Thus to construct
the initial algebra of a quantitative polynomial functor F , we first need to define a type
µF , endow it with a realisable structure map c : F (µF ) → µF , and finally show that the
mediating morphism fold to any other F -algebra (X, α : F (X) → X) is realisable. For
simplicity of notation, we present the construction as in the empty context.

Let F̃ : Set → Set designate the set functor obtained from F by replacing each linear
connective with a Cartesian one. This is a polynomial functor, and hence has an initial
algebra (µF̃ , c̃ : F̃ (µF̃ ) → µF̃ ). Our plan is to augment the F̃ -initial algebra with realisability
information following the structure of F . Denote by n the encoding of the numeral n using
tupling and Booleans in the underlying R-LCA A = P(N) from Example 5.

▶ Construction 27. Let F be a quantitative polynomial functor and let (µF̃ , c̃ : F̃ (µF̃ ) →
µF̃ ) be the initial algebra of F̃ in Set. We define ( ⊨µF x) ⊆ A by induction on x ∈ µF̃ and
the buildup of F : it is sufficient to define a ⊨µF c̃(y) for some y ∈ F̃ (µF̃ ), assuming we have
already defined the relation a′ ⊨µF z for all structurally smaller z.

if F = Id, then y ∈ |µF | and we have already defined ( ⊨µF x) ⊆ A. We define
a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, such that b ⊨µF y ∧ a = [1, b].
if F = ConstA, then y ∈ |A| and we define a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, such that b ⊨A

y ∧ a = [2, b].
if F = F ′⊗G′, then there are some y1 ∈ |F ′(µF )| and y2 ∈ |G′(µF )|, such that y = (y1, y2).
Let a ⊨µF c̃(y) ⇐⇒ ∃b1, b2 ∈ A, such that b1 ⊨F ′(µF ) y1 ∧ b2 ⊨G′(µF ) y2 ∧ a = [3, [b1, b2]]
if F = F ′ ⊕ G′, there are y1 ∈ |F ′(µF )| and y2 ∈ |G′(µF )|, such that y = inl(y1) or
y = inr(y2).
If y = inl(y1), let a ⊨µF c̃(y) ⇐⇒ ∃b1 ∈ A, such that b1 ⊨F ′(µF ) y1 ∧ a = [4, [T, b1]];
if y = inr(y2), let a ⊨µF c̃(y) ⇐⇒ ∃b2 ∈ A, such that b2 ⊨G′(µF ) y2 ∧ a = [4, [F, b2]].
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if F = F ′ & G′, there are y1 ∈ |F ′(µF )| and y2 ∈ |G′(µF )|, such that y = (y1, y2).
Let a ⊨µF c̃(y) ⇐⇒ ∃b1, b2 ∈ A, such that b1 ⊨F ′(µF ) y1 ∧ b2 ⊨G′(µF ) y2 ∧ a =
[5, case(b1, b2)].
if F = A

1→ F ′, then y ∈ |A → F (µF )|. Let a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, s.t. (∀i ∈ A ∀ai ∈
A, ai ⊨A i =⇒ b · ai ⊨F ′(µF ) y(i)) ∧ a = [6, b].

The only perhaps slightly odd case is for the function space F = A
1→ F ′, which is obtained

through unwinding the definition of a realisable function. The following lemma is easily
provable by induction on the buildup of F , using combinatory completeness to define the
realisers.

▶ Lemma 28. Let F be a quantitative polynomial functor and µF be constructed as in
Construction 27. Then the function c : F (µF ) → µF is realisable. ◀

Similarly, we can prove that the mediating morphism fold is realisable by induction on its
argument x ∈ µF̃ , when F is finitary, i.e., when the rule A

1→ F ′ is omitted. This is making
essential use of the fact that fold is an F̃ -algebra morphism in Set.

▶ Lemma 29. Let F be a finitary quantitative polynomial functor, and (X, α : F (X) → X)
be an F -algebra. Then the map fold : µF → X is realisable. ◀

It is important to understand why we had to assume that F was finitary: given a function
y ∈ |A 1→ F ′(µF )|, s.t. x = c(y), we get a family of realisers {ai|ai ⊨F ′(µF ) fold(y(i))}i∈|A|
by the induction hypothesis. However, we have to construct a realiser for fold(c(y)) itself —
that is, we have to find some b ∈ A, s.t. ∀i ∈ |A| if d ⊨A i, then b · d = ai. But there is no
general construction for such a b, because there is no guarantee that the function i 7→ ai is
linear, or even computable.

Even though there might be elements without realisers in our assemblies in general, we can
show by induction that elements in |µF | have realisers, for finitary quantitative polynomial
functors F , assuming of course that F is not constructed from ConstA for some A with
elements without realisers. We have to restrict ourselves to finitary quantitative polynomial
functors for the same reason as in the proof of Lemma 29: the induction hypothesis for
F = A

1→ F ′ only gives us a collection of realisers, but no computable function that selects
one for every realiser of a ∈ |A|.

▶ Proposition 30. Let F be a finitary quantitative polynomial functor such that if F was
generated using a ConstA rule, then every x ∈ |A| has a realiser. Then every element x ∈ |µF |
has a realiser. ◀

Altogether, we have now shown how to interpret the type µF as an assembly by making
use of the initial algebra of F̃ in Set, and how both the algebra map c : F (µF ) → µF and
the unique mediating morphism fold : µF → X are realisable, the latter if F is finitary.
Furthermore, if built from components where every element has a realiser, the initial algebra
will retain this property, which is often important for reasoning about terms in the model.
Hence initial algebras of finitary quantitative polynomial functors are supported in the
realisability model Mr .

6 Conclusions and Future Work

We have given the first principled account of data types in quantitative type theory. This
is necessary, since many established facts about ordinary data types, such as the universal
applicability of containers to represent all strictly positive type formers, do not carry over
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to the quantitative setting. Instead we have considered quantitative polynomial functors
inductively generated by a grammar. By firstly reducing elimination rules to initiality, and
then concretely constructing initial algebras in the model, we have shown how finitary data
types can be given semantics in a linear realisability model of QTT. This gives a precise
mathematical meaning to a subset of the data types that can be defined in Idris 2, and
reassurance that they are canonical, in the sense that they satisfy the universal property of
initiality.

The equivalence between elimination rules and initiality works for arbitrary quantitative
polynomial functors, but our proof of the existence of initial algebras in the realisability
model is restricted to finitary quantitative polynomial functors. We conjecture that also
infinitary data types are supported in this model, but this result is out of reach of our
current proof method. Our data types are also functors on categories of closed types, and
correspondingly we only derive induction principles in empty contexts; it would be good
to relax this restriction. y Going beyond simple polynomial functors, we believe it should
be possible to adapt Gambino and Hyland’s reduction of the existence of initial algebras of
indexed containers to the existence of initial algebras of containers [18] to the quantitative
setting, at least with an extensional identity type. It seems as if the proof should extend
to quantitative polynomial functors as well, with some more work. However going further,
Kaposi and Kovács have had great success describing and modelling quotient and higher
inductive-inductive types using a notion of signature based on internal categories with families
to model the intricate dependencies between different constructors [27, 28, 26]. It would
be interesting to see if a similar approach of internal type theory [14] using quantitative
categories with families could also work to describe more expressive data types in the setting
of QTT.
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