
Internalizing inductive-inductive definitions
in Martin-Löf Type Theory

Fredrik Nordvall Forsberg

Swansea University
csfnf@swansea.ac.uk

München 27.11.2012

Joint work with Anton Setzer.

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system.

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

A data type of sorted lists?

Say that I’m working in some functional programming language with
an expressive type system (Martin-Löf type theory/Agda).

I want to declare a data type whose elements are exactly sorted lists
(with elements from some ordered set (A,≤)).

So I try.

The empty list is sorted.

If I have a sorted list ` = [`0, . . . , `m], and an element a, and a ≤ all
`k in `, then [a, `0, . . . , `m] is a sorted list.

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

1

What is ≤L?

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

What is ≤L?

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

What is ≤L?

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

What is ≤L?

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

What is ≤L?

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> "a ≤L `" -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Sorted lists and ≤L

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> a ≤L ` -> SList

“a ≤L `” if a ≤ all elements of `.

Informal? No! We want to express the specification in the types.

Natural inductive definition:

Every a is trivially smaller than all elements of the empty list [].

If x ≤ a and inductively x ≤L `, then x ≤L cons(a, `, p).

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Sorted lists and ≤L

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> a ≤L ` -> SList

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Sorted lists and ≤L

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> a ≤L ` -> SList

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Sorted lists and ≤L

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> a ≤L ` -> SList

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []

≤L-cons : ∀ x -> x ≤ a -> x ≤L ` -> x ≤L cons(a, `, p)

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Sorted lists and ≤L

mutual

data SList : Set where

[] : SList

cons : (a : A) -> (` : SList) -> a ≤L ` -> SList

data ≤L : N -> SList -> Set where

triv : ∀ a -> a ≤L []
≤L-cons : ∀ x a ` p -> x ≤ a -> x ≤L ` -> x ≤L cons a ` p

Needs to be a mutual definition – cons refers to ≤L, which is indexed
by SList.

Both SList and ≤L defined inductively – an inductive-inductive
definition!

2

Plan

1 Four slides introduction to Martin-Löf type theory

2 A brief history of inductive types in type theory

3 Inductive-inductive definitions

4 A finite axiomatisation

5 Categorical semantics

3

Martin-Löf type theory

Five kinds of judgements:

Γ context

Γ ` A : Set

Γ ` r : A

Γ ` A = B : Set

Γ ` r = s : A

4

Some rules
Forming contexts:

ε context
Γ context Γ ` A : Set

Γ, x : A context

Forming types:

Γ context
Γ ` 1 : Set

Γ context Γ ` A : Set Γ, x : A ` B : Set

Γ ` (Σ x : A.B) : Set

...

Introducing terms:

Γ ` ? : 1

Γ ` a : A Γ ` b : B[a/x]

Γ ` 〈a, b〉 : Σx : A.B

...
5

Types we will be using

Dependent function space (x : A)→ B(x) (also written
∏

x :A B).

Elements functions f such that f (a) : B(a) whenever a : A.

Special case: non-dependent function space A→ B.

Dependent pairs (x : A)× B(x) (also written Σx : A.B).

Elements pairs 〈a, b〉 such that a : A and b : B(a).

Special case: Cartesian product A× B.

Disjoint union A + B.

Elements inl(a), inr(b) where a : A and b : B.

Can be constructed as Σx : 2.if x then A else B (if large elimination for 2 is

available).

Empty type 0, unit type 1 (with inhabitant ? : 1).

Logical Framework formulation of type theory.

6

Propositions as types

Propositions can be seen as types:

Universal quantification ∀x ∈ A.B(x) by (x : A)→ B(x).

Implication A→ B by A→ B.

Existential quantification ∃x ∈ A.B(x) by (x : A)× B(x).

Conjunction A ∧ B by A× B.

Disjunction A ∨ B by A + B.

The false proposition ⊥ by 0 (no proof).

True propositions by inhabited types.

Will be implicitly used in the rest of the talk.

7

A brief history of inductive types

In there beginning, there were examples
Martin-Löf (1972, 1979, 1980, . . .)

First accounts of Martin-Löf type theory includes examples of “inductively
generated” types:

N, finite sets (1972)

W-types (1979)

Kleene’s O, lists (1980)

. . .

The system is considered open; new inductive types should be added as
needed.

“We can follow the same pattern used to define natural numbers
to introduce other inductively defined sets. We see here the
example of lists.” – Martin-Löf 1980

8

Examples of inductive definitions

[] : ListN

x : N xs : ListN
(x :: xs) : ListN

0 : KleenesO
n : KleenesO

suc(n) : KleenesO

f : N→ KleenesO
lim(f) : KleenesO

a : A f : B(a)→W (A,B)

sup(a, f) : W (A,B)

data ListN : Set where

[] : ListN
:: : N→ ListN → ListN

data KleenesO : Set where

0 : KleenesO

S : KleenesO → KleenesO

lim : (N → KleenesO)

→ KleenesO

data W A B : Set where

sup : (a : A) →
(f : B a → W A B)

→ W A B

9

Induction principles/elimination rules

Each definition has a corresponding induction principle, stating that it
is the least set closed under its constructors.

E.g.

elimListN : (P : ListN → Set)→
(step[] : P([]))→
(step:: : (x : N)→ (xs : ListN)→ P(xs)→ P(x :: xs))→
(y : ListN)→ P(y)

elimListN(P, step[], step::, []) = step[]

elimListN(P, step[], step::, x :: xs) = step::(x , xs, elimListN(. . . , xs))

How can we talk about all inductive definitions?

10

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X

: Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b)

: Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

11

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X

: Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b)

: Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

11

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

11

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

11

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

11

Syntactic schemata
Backhouse (1987), Coquand and Paulin-Mohring (1990), Dybjer (1994), . . .

Dybjer (1994) considers constructors of the form

introU : (A :: σ)

(b :: β[A])→
(u :: γ[A, b])→
U

where

σ is a sequence of types for parameters [‘x :: Y ’ telescope notation]

β[A] is a sequence of types for non-inductive arguments.

γ[A, b] is a sequence of types for inductive arguments:

Each γi [A, b] is of the form ξi [A, b]→ U (strict positivity).

12

Syntactic schemata (cont.)

The elimination and computation rules are determined by an inversion
principle.

Infinite axiomatisation.

Inprecise; ‘. . . ’ everywhere.

No way to reason about an arbitrary inductive definition inside the
system (generic map etc.).

13

Syntax internalised
Dybjer and Setzer (1999, 2003, 2006) [for IR]

Setzer wanted to analyse the proof-theoretical strength of Dybjer’s
schema version of induction-recursion.

Hard with lots of ‘. . . ’ around. . .

So they developed an axiomatisation where the syntax has been
internalised into the system.

Basic idea (simplified for inductive definitions) : the type is “given by
constructors”, so describe the domain of the constructor

introUγ : Arg(γ,Uγ)→ Uγ

[γ is “code” that contains the necessary information to describe Uγ .]

14

Basic idea in some more detail

Universe SP of codes for the domain of constructors of inductively
defined sets. [SP stands for Strictly Positive.]

Decoding function Arg : SP→ Set→ Set. [Arg(γ,X) is the domain
where X is used for the inductive arguments.]

For every γ : SP, stipulate that there is a set Uγ and a constructor
introγ : Arg(γ,Uγ)→ Uγ .

Inversion principle for elimination and computation rules.

15

SP, Arg and Uγ

data SP: Set1 where

nil : SP

nonind : (A : Set) → (A → SP) → SP
ind : (A : Set) → SP→ SP

Arg : SP → Set → Set
Arg nil X = 1
Arg (nonind A γ) X = (y : A) × (Arg (γ y) X)

Arg (ind A γ) X = (A → X) × (Arg γ X)

data U (γ : SP) : Set where

intro : Arg γ (U γ) → U γ

16

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= {?0 : ListN}

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro {?2 : Arg(γListN , ListN)}

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro {?2 : (x : 2)× (if x then 1 else N× (1→ ListN)× 1)}

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈 {?3 : 2} , {?4 : if ?3 then 1 else N× . . .} 〉

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, {?4 : 1} 〉

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = {?1 : ListN}

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = intro 〈ff, {?5 : N× (1→ ListN)× 1} 〉

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = intro 〈ff, 〈 {?6 : N} , {?7 : 1→ ListN} , {?8 : 1} 〉〉

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = intro 〈ff, 〈x, {?7 : 1→ ListN} , {?8 : 1} 〉〉

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = intro 〈ff, 〈x, (λ . xs) , {?8 : 1} 〉〉

17

Example: the code for ListN
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListN = nil +SP nonind(N, λ .ind(1, nil))

with

ListN : Set
ListN = U γListN

[]: ListN
[]= intro 〈tt, ?〉

:: : N → ListN → ListN
x :: xs = intro 〈ff, 〈x, (λ .xs) , ?〉〉

17

A low-level construction

The universe described is very much a low-level construction.

We do not expect the user to deal with the universe directly.

Rather, high-level constructs (data declarations etc) can be
translated to a core type theory with a universe of data types.

Makes generic operations (decidable equality, map etc) possible.

Route taken in Epigram 2.

Chapman, Dagand, McBride and Morris: The Gentle Art of Levitation
(2010)

Dagand, McBride: Elaborating Inductive Definitions (2012)

18

The unstoppable march of progress

So far, we have described “simple” inductive types.

When programming or proving with dependent types, one quickly
feels the need for more advanced data structures.

Inductive families U : I → Set

Induction-recursion U : Set, T : U → Set

Inductive-inductive definitions A : Set, B : A→ Set

Can we scale the universe just described to handle these data types as
well?

Anticipated answer: yes! This talk: inductive-inductive definitions.

19

The unstoppable march of progress

So far, we have described “simple” inductive types.

When programming or proving with dependent types, one quickly
feels the need for more advanced data structures.

Inductive families U : I → Set

Induction-recursion U : Set, T : U → Set

Inductive-inductive definitions A : Set, B : A→ Set

Can we scale the universe just described to handle these data types as
well?

Anticipated answer: yes! This talk: inductive-inductive definitions.

19

Inductive-inductive definitions

What is an inductive-inductive definition?

Induction-induction is a principle for defining data types A : Set,
B : A→ Set.

Both A and B are defined inductively, “given by constructors”.

A and B are defined simultaneously, so the constructors for A can
refer to B and vice versa.

In addition, the constructors for B can even refer to the constructors
for A.

20

What is an inductive-inductive definition?

Induction-induction is a principle for defining data types A : Set,
B : A→ Set.

Both A and B are defined inductively, “given by constructors”.

A and B are defined simultaneously, so the constructors for A can
refer to B and vice versa.

In addition, the constructors for B can even refer to the constructors
for A.

20

Induction versus recursion

I mean induction as a definitional principle.

“All natural numbers are generated from zero and successor.”

By recursion, I mean a structured way to take apart something which
is defined by induction.

“Plus is defined by recursion on its first argument.”

Important to see the difference between induction-recursion and
induction-induction.

Proof by induction is just dependent recursion.

21

Induction versus recursion

I mean induction as a definitional principle.

“All natural numbers are generated from zero and successor.”

By recursion, I mean a structured way to take apart something which
is defined by induction.

“Plus is defined by recursion on its first argument.”

Important to see the difference between induction-recursion and
induction-induction.

Proof by induction is just dependent recursion.

21

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, conjecture that it can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

22

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, conjecture that it can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

22

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, conjecture that it can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

22

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, conjecture that it can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

22

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, conjecture that it can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

22

Examples of inductive-inductive
definitions

Modelling dependent type theory

Instances of induction-induction have been used implicitly by

Dybjer (Internal type theory, 1996),

Danielsson (A formalisation of a dependently typed language as an inductive-recursive

family, 2007), and

Chapman (Type theory should eat itself, 2009)

to model dependent type theory inside itself.

23

Type theory inside type theory

Ctxt : Set

Ty : Ctxt→ Set

Term : (Γ : Ctxt)→ Ty(Γ)→ Set

. . .

Substitutions, . . .

. . .

24

defined inductively

The crucial point

The empty context ε is a well-formed context.

If τ is a well-formed type in context Γ, then Γ, x : τ is a well-formed
context.

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

Γ . τ : Ctxt

25

The crucial point

The empty context ε is a well-formed context.

If τ is a well-formed type in context Γ, then Γ, x : τ is a well-formed
context.

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

Γ . τ : Ctxt

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt

σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ)

τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Σ x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Σ(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

26

Conway’s surreal numbers

Totally ordered Field containing the reals and the ordinals (at least
classically).

“Fills the holes” between them as well (think infinitesimals).

Constructed in one step, instead of N ; Z ; Q ; R.

John Conway: On Numbers and Games.

Donald Knuth: Surreal Numbers.

27

From Dedekind cuts to surreal numbers

Definition (Dedekind cut)

A Dedekind cut (L,R) consists of two non-empty sets of rational numbers
L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number (L,R) consists of two non-empty sets of rational
numbers L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of rational
numbers L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

L contains no greatest element.

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

28

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

An inductive-inductive definition!

28

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

An inductive-inductive definition!

28

An inductive-inductive definition

Define simultaneously

Surreal : Set

≤ : Surreal→ Surreal→ Set

6≤ : Surreal→ Surreal→ Set

Need to encode some set theory such as P(Surreal) and x ∈ XL in type
theory – we deal with this informally.

(Use P(X) := Σa : U.T (a)→ X for some universe (U,T). See e.g. Aczel’s

interpretation of CZF in type theory (Aczel 1978).)

29

Constructor for Surreal

Definition

A surreal number {XL|XR} consists of two sets of surreal numbers XL,XR

such that

(∀xL ∈ XL)(∀xR ∈ XR)¬(xL ≥ xR).

All surreal numbers are constructed this way.

data Surreal : Set where

{ | } : (XL : P(Surreal))→ (XR : P(Surreal))

→ (∀xL ∈ XL)(∀xR ∈ XR)((xL ≥ xR)→ ⊥)

→ Surreal

30

Constructor for Surreal

Definition

A surreal number {XL|XR} consists of two sets of surreal numbers XL,XR

such that

(∀xL ∈ XL)(∀xR ∈ XR)¬(xL ≥ xR).

All surreal numbers are constructed this way.

data Surreal : Set where

{ | } : (XL : P(Surreal))→ (XR : P(Surreal))

→ (∀xL ∈ XL)(∀xR ∈ XR)((xL ≥ xR)→ ⊥)

→ Surreal

30

Constructor for Surreal

Definition

A surreal number {XL|XR} consists of two sets of surreal numbers XL,XR

such that

(∀xL ∈ XL)(∀xR ∈ XR)¬(xL ≥ xR).

All surreal numbers are constructed this way.

data Surreal : Set where

{ | } : (XL : P(Surreal))→ (XR : P(Surreal))

→ (∀xL ∈ XL)(∀xR ∈ XR)((xL ≥ xR)→ ⊥)

→ Surreal

30

We cannot have negative
occurrences of the set we
are defining!

Constructor for Surreal

Definition

A surreal number {XL|XR} consists of two sets of surreal numbers XL,XR

such that

(∀xL ∈ XL)(∀xR ∈ XR)¬(xL ≥ xR).

All surreal numbers are constructed this way.

data Surreal : Set where

{ | } : (XL : P(Surreal))→ (XR : P(Surreal))

→ (∀xL ∈ XL)(∀xR ∈ XR)(xL 6≥ xR)

→ Surreal

30

Negative occurrences of ≥
Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

Define x ≥ y and x 6≥y simultaneously.

¬(x ≥ y) iff

¬((∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x))

if
(∃xR ∈ XR) (y ≥ xR) or (∃yL ∈ YL) (yL ≥ x)

(also “only if” with classical logic).

So we define x 6≥y iff

(∃xR ∈ XR) (y ≥ xR) or (∃yL ∈ YL) (yL ≥ x)

31

Mutual definition of ≥ and 6≥

Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

data ≥: Surreal→ Surreal→ Set where

geq : . . .XL,XR , p . . .

→ . . .YL,YR , q . . .

→ (∀xR ∈ XR)({YL|YR}q 6≥xR)

→ (∀yL ∈ YL)(yL 6≥{XL|XR}p)

→ {XL|XR}p ≥ {YL|YR}q

32

Mutual definition of ≥ and 6≥ (cont.)

¬(x ≥ y) if

(∃xR ∈ XR) (y ≥ xR) or (∃yL ∈ YL) (yL ≥ x)

data 6≥ : Surreal→ Surreal→ Set where

ngeql : . . .XL,XR , p . . .

→ . . .YL,YR , q . . .

→ (∃xR ∈ XR)({YL|YR}q ≥ xR)

→ {XL|XR}p 6≥{YL|YR}q
ngeqr : . . .XL,XR , p . . .

→ . . .YL,YR , q . . .

→ (∃yL ∈ YL)(yL ≥ {XL|XR}p)

→ {XL|XR}p 6≥{YL|YR}q

33

Constructing the Field structure

Can then use the elimination rules for inductive-inductive definitions
to define negation, addition, multiplication . . .

Typical pattern: need to define the operation and prove that it
preserves the order structure etc simultaneously.

Work in progress.

Related work: Mamane: Surreal Numbers in Coq (2006)

Encoding of surreal numbers, since Coq does not support
induction-induction.

34

A finite axiomatisation

An axiomatisation

How to axiomatise a type theory with inductive-inductive definitions?

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

35

An axiomatisation

How to axiomatise a type theory with inductive-inductive definitions?

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

35

An axiomatisation

How to axiomatise a type theory with inductive-inductive definitions?

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

35

An axiomatisation

How to axiomatise a type theory with inductive-inductive definitions?

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

35

Main idea

We define

a set
SP0

A : Set

of codes for inductive definitions for A,

a set
SP0

B : SP0
A → Set

of codes for inductive definitions for B.

the set of arguments for the constructor of A:

Arg0
A : SP0

A → (X : Set)→ (Y : X → Set)→ Set

36

Main idea (cont.)

the set of arguments and indices for the constructor of B:

Arg0
B :(γA : SP0

A)→
(γB : SP0

B(γA))

(X : Set)→
(Y : X → Set)→
(introA : Arg0

A(γA,X ,Y)→ X)

→ Set

Index0
B : · · · same arguments as Arg0

B · · ·
Arg0

B(γA, γB,X ,Y , introA)→ X

37

Formation and introduction rules

Formation rules:

AγA,γB : Set BγA,γB : AγA,γB → Set

Introduction rule for AγA,γB :

a : Arg0
A(γA,AγA,γB ,BγA,γB)

introAγA,γB (a) : AγA,γB

Introduction rule for BγA,γB :

a : Arg0
B(γA, γB,AγA,γB ,BγA,γB , introAγA,γB)

introBγA,γB (a) : BγA,γB(Index0
B(γA, γB,AγA,γB ,BγA,γB , introAγA,γB , a))

Elimination rules: no problem in extensional type theory, not so easy intentionally.

38

Definition of SPA

Instead of defining SP0
A we define a more general set

SPA : (Xref : Set)→ Set

with a set Xref of elements of the set to be defined which we can refer
to.

In definition of ArgA, also require function

repX : Xref → X

mapping elements in Xref to the element in X they represent.

Then

SP0
A := SPA(0)

repX = !X : 0→ X

39

The codes in SPA
nil

Base case; introA : 1→ A.

nil : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX) = 1

40

The codes in SPA
non-ind

Noninductive argument; introA :
(
(x : K)× . . .

)
→ A.

K : Set γ : K → SPA(Xref)

non-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX) =

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

41

The codes in SPA
non-ind

Noninductive argument; introA :
(
(x : K)× . . .

)
→ A.

K : Set γ : K → SPA(Xref)

non-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX) =

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

41

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .

42

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .

42

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .
42

The codes in SPA
B-ind

Inductive argument in B; introA :
(
(g : (x : K)→ B(i(x)))× . . .

)
→ A.

K : Set hindex : K → Xref γ : SPA

B-ind(K , hindex, γ) : SPA

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX)=

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

ArgA(Xref ,B-ind(K , hindex, γ),X ,Y , repX) =

(g : (x : K)→ Y ((repX ◦ hindex)(x)))× ArgA(Xref , γ,X ,Y , repX)

43

The codes in SPA
B-ind

Inductive argument in B; introA :
(
(g : (x : K)→ B(i(x)))× . . .

)
→ A.

K : Set hindex : K → Xref γ : SPA

B-ind(K , hindex, γ) : SPA

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX)=

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

ArgA(Xref ,B-ind(K , hindex, γ),X ,Y , repX) =

(g : (x : K)→ Y ((repX ◦ hindex)(x)))× ArgA(Xref , γ,X ,Y , repX)

43

An example

The constructor
. : ((Γ : Ctxt)× Ty(Γ))→ Ctxt

is represented by the code

γ. = A-ind(1,B-ind(1, λ(? : 1) . inr(?), nil))

We have

ArgA(0, γ.,Ctxt,Ty, !Ctxt) = (Γ : 1→ Ctxt)× (1→ Ty(Γ(?)))× 1
∼= (Γ : Ctxt)× Ty(Γ)

44

The codes in SPB

The universe SP0
B : SP0

A → Set is similar to SP0
A.

Need argument SP0
A to know the shape of constructor for the first

set, which can appear in indices.

We omit the definition here.

45

Categorical semantics

Initial-algebra like semantics
Joint work with Thorsten Altenkirch and Peter Morris (CALCO 2011)

Thorsten was not happy with the axiomatisation presented.

He wanted something cleaner, like initial-algebra semantics.

However, seem to need to use dialgebras f : F (A)→ G (A) instead of
ordinary algebras f : F (A)→ A.

46

Dialgebras

Definition

Let F ,G : C→ D be functors. An (F ,G)-dialgebra (X, f) consists of
X ∈ C and f : F (X)→ G (X). A morphism between dialgebras (X , f) and
(Y , g) is a morphism α : X → Y in C such that

F (X)
f //

F (α)
��

G (X)

G(α)
��

F (Y) g
// G (Y)

Write Dialg(F ,G) for the category of (F ,G)-dialgebras.

Of course, G = id : C→ C gives ordinary F -algebras as a special case.

47

ArgA and ArgB as functors

Theorem (extensional type theory)

For all γA, γB, ArgA(γA) and ArgB(γA, γB) extends to functors

ArgA(γA) : Fam(Set)→ Set

ArgB(γA, γB) : Dialg(ArgA(γA), π0)→ Fam(Set)

where π0 : Fam(Set)→ Set is defined by π0(A,B) = A.

Definition of EγA,γB
Using a pullback of categories, one can define a subcategory EγA,γB of the
category Dialg(ArgB,V) playing the role of the category of algebras.

V : Dialg(ArgA,U)→ Fam(Set) is the forgetful functor V (X , f) = X .

48

Elimination rules from initiality

One can then show:

Theorem (extensional type theory)

For an inductive-inductive definition given by a code (γA, γB), the
elimination rules hold if and only if EγA,γB has an initial object.

Main obstacle: Initiality gives non-dependent functions, elimination rules
dependent. Solution: Use Σ-types.

49

Concluding remarks

Status in proof assistants

Not supported in Coq or Epigram.

Is supported in Agda!

Now we know it is sound as well. . .

50

Conjecture: reducible to indexed inductive definitions

It seems as if the theory of inductive-inductive definitions can be
reduced to the (extensional) theory of indexed inductive definitions.

Define simultaneously

Apre : Set Bpre : Set

ignoring dependencies of B on A.

Then select A ⊆ Apre, B ⊆ Bpre that satisfy the typing by two
inductively defined predicates (indexed inductive definitions).

Implicitly used by Conway (and Mamane) for the surreal numbers
(games).

51

Summary

Take away message 1

When programming with dependent types, one naturally wants more
advanced data structures such as inductive-inductive definitions.

Take away message 2

By using a universe of data types, they can be internalised into the type
theory, useful e.g. for generic programming.

Axiomatisation à la induction-recursion (N. F., Setzer 2010, 2012).

Alternative categorical characterisation (N. F., Altenkirch, Morris,
Setzer 2011).

Will hopefully turn into a thesis in the spring.

52

Summary

Take away message 1

When programming with dependent types, one naturally wants more
advanced data structures such as inductive-inductive definitions.

Take away message 2

By using a universe of data types, they can be internalised into the type
theory, useful e.g. for generic programming.

Axiomatisation à la induction-recursion (N. F., Setzer 2010, 2012).

Alternative categorical characterisation (N. F., Altenkirch, Morris,
Setzer 2011).

Will hopefully turn into a thesis in the spring.

52

Thanks!

	Introduction
	Sorted lists data type
	Preliminaries

	A brief history of inductive types
	How can we talk about all inductive definitions?
	More advanced data types

	Inductive-inductive definitions
	What is it?
	What it is not

	Examples of inductive-inductive definitions
	Contexts and types
	Surreal numbers

	A finite axiomatisation
	A universe of codes

	Categorical semantics
	Initial-algebra like semantics

	Concluding remarks
	Proof assistants
	Reduction to indexed inductive definitions
	Conclusion

