
Inductive-inductive definitions
in Intuitionistic Type Theory

Fredrik Nordvall Forsberg

MSP group, Strathclyde, Glasgow
fredrik.nordvall-forsberg@strath.ac.uk

Stockholm, 11 June 2014

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

How can we construct this?

1

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

How can we construct this?

1

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

A
ι // A∗

(dense)

How can we construct this?

1

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

A
ι //

f

��

A∗
(dense)

X
(dense)

How can we construct this?

1

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

How can we construct this?

1

A toy example

Definition (Dense relation)

Recall that a relation < on a set A is dense if

∀ x , y : A . x < y =⇒ ∃ z : A . x < z < y

e.g. (Q, <) is dense, but (N, <) is not.

For arbitrary (A, <), consider the dense completion (A∗, <∗): the
“smallest” dense relation containing (A, <).

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

How can we construct this?
1

Constructing the dense completion

Intuitively:

1 start with A

2 for each pair x < y , add a midpoint x <∗ mid(x , y) <∗ y

3 now we have new points, so add even more midpoints

4 etc

Formally: inductive-inductive definition

2

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

The dense completion in Fantasy Coq

Parameters A : Type, < : A -> A -> Type.

Inductive A∗ : Type :=

| ι : A -> A∗

| mid : forall x y : A∗, x <∗ y -> A∗

with <∗ : A∗ -> A∗ -> Type :=

| ι< : forall x y : A, x < y -> ι x <∗ ι y

| midr : forall x y : A∗, forall p : x <∗ y, x <∗ mid x y p

| midl : forall x y : A∗, forall p : x <∗ y, mid x y p <∗ y.

Definition denseA∗ (x y : A∗)(p : x <∗ y)

: { z : A∗ & x <∗ z & z <∗ y }
:= existT2 (mid x y p) (midr x y p) (midl x y p).

3

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Parameters

(X : Type)(<X : X -> X -> Type)

(denseX : forall x y : X, { z : X & x <X z & z <X y})
(f : A -> X)

(f< : forall x y : A, x < y -> (f x) <X (f y)).

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => {?0 : X}
| mid x y p => {?1 : X}

end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => {?1 : X}
end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => proj1 (denseX {?2 : X} {?3 : X} {?4 :?2 <X ?3})
end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => proj1 (denseX (f̄ x) {?3 : X} {?4 : f̄ x <X ?3})
end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => proj1 (denseX (f̄ x) (f̄ y) {?4 : f̄ x <X f̄ y})
end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => proj1 (denseX (f̄ x) (f̄ y) {?4 : f̄ x <X f̄ y})
end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Defining f̄

A
ι //

f

��

A∗
(dense)

f̄
yy

X
(dense)

Fixpoint f̄ (z : A∗) : X :=

match z with

| ι a => f a

| mid x y p => proj1 (denseX (f̄ x) (f̄ y) (f̄ < x y p))

end

with f̄ < (x y : A∗)(p : x <∗ y) : f̄ x <X f̄ y := ...

4

Plan

1 A brief history of inductive types in type theory

2 Inductive-inductive definitions

3 Examples

4 Meta-theoretical results

5

A brief history of inductive types

In the beginning, there were examples
Martin-Löf (1972, 1979, 1980, . . .)

First accounts of Martin-Löf type theory includes examples of “inductively
generated” types:

N, finite sets (1972)

W-types (1979)

Kleene’s O, lists (1980)

. . .

The system is considered open; new inductive types should be added as
needed.

“We can follow the same pattern used to define natural numbers
to introduce other inductively defined sets. We see here the
example of lists.” – Martin-Löf 1980

6

Examples of inductive definitions

[] : ListA

x : A xs : ListA
(x :: xs) : ListA

0 : O
n : O

suc(n) : O

f : N→ O
sup(f) : O

a : A f : B(a)→W (A,B)

sup(a, f) : W (A,B)

data ListA : Set where

[] : ListA
:: : A→ ListA → ListA

data O : Set where

0 : O
S : O → O
sup : (N → O) → O

data W (A : Set)(B : A → Set) : Set
sup : (a : A) →

(f : B a → W A B) → W A B

7

Induction principles/elimination rules

Each definition has a corresponding induction principle, stating that it
is the least set closed under its constructors.

E.g.

elimListA : (P : ListA → Set)→
(step[] : P([]))→
(step:: : (x : N)→ (xs : ListA)→ P(xs)→ P(x :: xs))→
(y : ListA)→ P(y)

elimListA(P, step[], step::, []) = step[]

elimListA(P, step[], step::, x :: xs) = step::(x , xs, elimListA(. . . , xs))

How can we talk about all inductive definitions?

8

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X

: Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b)

: Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

9

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X

: Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b)

: Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

9

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

9

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

9

Church encodings?
Pfenning and Paulin-Mohring (1989)

First attempt in Calculus of Constructions: use Church encodings of
inductive types.

E.g.
N = (X : Set)→ X → (X → X)→ X : Set

IdA(a, b) = (X : A→ Set)→ X (a)→ X (b) : Set

Problems:

Uses impredicativity in an essential way.

Induction (dependent elimination) is not derivable in CoC for any
encoding (Geuvers 2001).

Solution: Calculus of Inductive Constructions with inductive types
builtin (according to schema).

9

Syntactic schemata
Backhouse (1987), Coquand and Paulin-Mohring (1990), Dybjer (1994), . . .

Dybjer (1994) considers constructors of the form

introU : (A :: σ)

(b :: β[A])→
(u :: γ[A, b])→
U

where

σ is a sequence of types for parameters [‘x :: Y ’ telescope notation]

β[A] is a sequence of types for non-inductive arguments.

γ[A, b] is a sequence of types for inductive arguments:

Each γi [A, b] is of the form ξi [A, b]→ U (strict positivity).

10

Syntactic schemata (cont.)

The elimination and computation rules are determined by an inversion
principle.

Infinite axiomatisation.

Inprecise; ‘. . . ’ everywhere.

No way to reason about an arbitrary inductive definition inside the
system (generic map etc.).

11

Syntax internalised
Dybjer and Setzer (1999, 2003, 2006) [for IR]

Setzer wanted to analyse the proof-theoretical strength of Dybjer’s
schema version of induction-recursion.

Hard with lots of ‘. . . ’ around. . .

So they developed an axiomatisation where the syntax has been
internalised into the system.

Basic idea (simplified for inductive definitions) : the type is “given by
constructors”, so describe the domain of the constructor

introUγ : Arg(γ,Uγ)→ Uγ

[γ is “code” that contains the necessary information to describe Uγ .]

12

Basic idea in some more detail

Universe SP of codes for the domain of constructors of inductively
defined sets. [SP stands for Strictly Positive.]

Decoding function Arg : SP→ Set→ Set. [Arg(γ,X) is the domain
where X is used for the inductive arguments.]

For every γ : SP, stipulate that there is a set Uγ and a constructor
introγ : Arg(γ,Uγ)→ Uγ .

Inversion principle for elimination and computation rules.

13

SP, Arg and Uγ

data SP: Set1 where

nil : SP

nonind : (A : Set) → (A → SP) → SP
ind : (A : Set) → SP→ SP

Arg : SP → Set → Set
Arg nil X = 1
Arg (nonind A γ) X = (y : A) × (Arg (γ y) X)

Arg (ind A γ) X = (A → X) × (Arg γ X)

data U (γ : SP) : Set where

intro : Arg γ (U γ) → U γ

14

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= {?0 : ListA}

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro {?2 : Arg(γListA , ListA)}

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro {?2 : (x : 2)× (if x then 1 else N× (1→ ListA)× 1)}

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈 {?3 : 2} , {?4 : if ?3 then 1 else N× . . .} 〉

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, {?4 : 1} 〉

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = {?1 : ListA}

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = intro 〈ff, {?5 : N× (1→ ListA)× 1} 〉

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = intro 〈ff, 〈 {?6 : N} , {?7 : 1→ ListA} , {?8 : 1} 〉〉

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = intro 〈ff, 〈x, {?7 : 1→ ListA} , {?8 : 1} 〉〉

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = intro 〈ff, 〈x, (λ . xs) , {?8 : 1} 〉〉

15

Example: the code for ListA
We can encode two constructors into one using the dependency on
non-inductive arguments:

γ +SP ψ := nonind(2, λx . if x then γ else ψ)

We have
γListA = nil +SP nonind(N, λ .ind(1, nil))

with

ListA : Set
ListA = U γListA

[]: ListA
[]= intro 〈tt, ?〉

:: : N → ListA → ListA
x :: xs = intro 〈ff, 〈x, (λ .xs) , ?〉〉

15

A low-level construction

The universe described is very much a low-level construction.

We do not expect the user to deal with the universe directly.

Rather, high-level constructs (data declarations etc) can be
translated to a core type theory with a universe of data types.

Makes generic operations (decidable equality, map etc) possible.

Route taken in Epigram 2.

Chapman, Dagand, McBride and Morris: The Gentle Art of Levitation
(2010)

Dagand, McBride: Elaborating Inductive Definitions (2012)

16

The unstoppable march of progress

So far, we have described “simple” inductive types.

When programming or proving with dependent types, one quickly
feels the need for more advanced data structures.

Inductive families U : I → Set

Induction-recursion U : Set, T : U → Set

Inductive-inductive definitions A : Set, B : A→ Set

Can we scale the universe just described to handle these data types as
well?

Anticipated answer: yes! This talk: inductive-inductive definitions.

17

The unstoppable march of progress

So far, we have described “simple” inductive types.

When programming or proving with dependent types, one quickly
feels the need for more advanced data structures.

Inductive families U : I → Set

Induction-recursion U : Set, T : U → Set

Inductive-inductive definitions A : Set, B : A→ Set

Can we scale the universe just described to handle these data types as
well?

Anticipated answer: yes! This talk: inductive-inductive definitions.

17

Inductive-inductive definitions

What is an inductive-inductive definition?

Induction-induction is a principle for defining data types A : Set,
B : A→ Set.

Both A and B are defined inductively, “given by constructors”.

A and B are defined simultaneously, so the constructors for A can
refer to B and vice versa.

In addition, the constructors for B can even refer to the constructors
for A.

18

What is an inductive-inductive definition?

Induction-induction is a principle for defining data types A : Set,
B : A→ Set.

Both A and B are defined inductively, “given by constructors”.

A and B are defined simultaneously, so the constructors for A can
refer to B and vice versa.

In addition, the constructors for B can even refer to the constructors
for A.

18

Induction versus recursion

I mean induction as a definitional principle.

“All natural numbers are generated from zero and successor.”

By recursion, I mean a structured way to take apart something which
is defined by induction.

“Plus is defined by recursion on its first argument.”

Amounts to the difference between induction-recursion and
induction-induction.

19

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, a weak version of I-I can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

20

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, a weak version of I-I can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

20

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, a weak version of I-I can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

20

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, a weak version of I-I can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

20

But isn’t that. . . ?
An inductive-inductive definition is in general not:

1 An ordinary inductive definition (example: N)

Because we define A : Set and B : A→ Set simultaneously.

2 An ordinary mutual inductive definition (example: even and odd
numbers)

Because B : A→ Set is indexed by A.

3 An indexed inductive definition (example: lists of a certain length)

Because the index set A : Set is defined along with B : A→ Set, and
not fixed beforehand.

However, a weak version of I-I can be reduced to IID.

4 An inductive-recursive definition (example: universes in type theory)

Because B : A→ Set is defined inductively, not recursively.

1 is a special case of 2 , which is a special case of 3 , which is a special
case of induction-induction. However 4 is not.

20

Examples of inductive-inductive
definitions

Examples of examples

Foundations: Constructive model theory; internal Type Theory.

Mathematics: the Surreal numbers.

Computer science: Sorted lists.

21

Modelling dependent type theory

Instances of induction-induction have been used implicitly by

Dybjer (Internal type theory, 1996),

Danielsson (A formalisation of a dependently typed language as an inductive-recursive

family, 2007), and

Chapman (Type theory should eat itself, 2009)

to model dependent type theory inside itself.

22

Type theory inside type theory

Ctxt : Set

Ty : Ctxt→ Set

Term : (Γ : Ctxt)→ Ty(Γ)→ Set

. . .

Substitutions, . . .

. . .

23

defined inductively

The crucial point

The empty context ε is a well-formed context.

If τ is a well-formed type in context Γ, then Γ, x : τ is a well-formed
context.

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

Γ . τ : Ctxt

24

The crucial point

The empty context ε is a well-formed context.

If τ is a well-formed type in context Γ, then Γ, x : τ is a well-formed
context.

ε : Ctxt

Γ : Ctxt τ : Ty(Γ)

Γ . τ : Ctxt

24

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt

σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ)

τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Constructor for Ty referring to constructor for Ctxt

Γ context Γ ` σ type Γ, x : σ ` τ(x) type

Γ ` Π x :σ . τ(x) type

Γ : Ctxt σ : Ty(Γ) τ : Ty(Γ . σ)

Π(σ, τ) : Ty(Γ)

(
Also have base type ι in any context:

Γ : Ctxt
ιΓ : Ty(Γ)

)

25

Conway’s surreal numbers

Totally ordered Field containing the reals and the ordinals (at least
classically).

“Fills the holes” between them as well (think infinitesimals).

Constructed in one step, instead of N ; Z ; Q ; R.

John Conway: On Numbers and Games.

Donald Knuth: Surreal Numbers.

26

From Dedekind cuts to surreal numbers

Definition (Dedekind cut)

A Dedekind cut (L,R) consists of two non-empty sets of rational numbers
L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number (L,R) consists of two non-empty sets of rational
numbers L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of rational
numbers L,R ⊆ Q such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

All elements of L are less than all elements of R ,

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two non-empty sets of surreal numbers
L,R such that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR),

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition (Surreal number)

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

L ∪ R = Q ,

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

L contains no greatest element.

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

27

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

An inductive-inductive definition!
I Mamane: Surreal Numbers in Coq (2006)

Encoding of the inductive-inductive definition, since Coq does not
support them.

27

From Dedekind cuts to surreal numbers

Definition

A surreal number {L|R} consists of two sets of surreal numbers L,R such
that

(∀xL ∈ L)(∀xR ∈ R)¬(xL ≥ xR).

All surreal numbers are constructed this way.

Definition

Let x = {XL|XR}, y = {YL|YR}. We say x ≥ y iff

(∀xR ∈ XR)¬(y ≥ xR) and (∀yL ∈ YL)¬(yL ≥ x)

An inductive-inductive definition!
I Mamane: Surreal Numbers in Coq (2006)

Encoding of the inductive-inductive definition, since Coq does not
support them.

27

A finite axiomatisation

An axiomatisation

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

28

An axiomatisation

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

28

An axiomatisation

High-level idea: Add a universe (family) SP = (SP0
A,SP0

B) of codes
representing the inductive-inductively defined sets.

Stipulate that for each code γ = (γA, γB), there are

Aγ : Set

Bγ : Aγ → Set

and constructors

introA : Arg0
A(γA,Aγ ,Bγ)→ Aγ

introB : (x : Arg0
B(γB,Aγ ,Bγ , introA))→ Bγ(iγ(x))

The codes describe the “pattern functors” Arg0
A, Arg0

B.

28

Main idea

We define

a set
SP0

A : Set

of codes for inductive definitions for A,

a set
SP0

B : SP0
A → Set

of codes for inductive definitions for B.

the set of arguments for the constructor of A:

Arg0
A : SP0

A → (X : Set)→ (Y : X → Set)→ Set

29

Main idea (cont.)

the set of arguments and indices for the constructor of B:

Arg0
B :(γA : SP0

A)→
(γB : SP0

B(γA))

(X : Set)→
(Y : X → Set)→
(introA : Arg0

A(γA,X ,Y)→ X)

→ Set

Index0
B : · · · same arguments as Arg0

B · · ·
Arg0

B(γA, γB,X ,Y , introA)→ X

30

Formation and introduction rules

Formation rules:

AγA,γB : Set BγA,γB : AγA,γB → Set

Introduction rule for AγA,γB :

a : Arg0
A(γA,AγA,γB ,BγA,γB)

introAγA,γB (a) : AγA,γB

Introduction rule for BγA,γB :

a : Arg0
B(γA, γB,AγA,γB ,BγA,γB , introAγA,γB)

introBγA,γB (a) : BγA,γB(Index0
B(γA, γB,AγA,γB ,BγA,γB , introAγA,γB , a))

Elimination rules by inversion of introduction rules

31

Definition of SPA

Instead of defining SP0
A we define a more general set

SPA : (Xref : Set)→ Set

with a set Xref of elements of the set to be defined which we can refer
to.

In definition of ArgA, also require function

repX : Xref → X

mapping elements in Xref to the element in X they represent.

Then

SP0
A := SPA(0)

repX = !X : 0→ X

32

The codes in SPA
nil

Base case; introA : 1→ A.

nil : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX) = 1

33

The codes in SPA
non-ind

Noninductive argument; introA :
(
(x : K)× . . .

)
→ A.

K : Set γ : K → SPA(Xref)

non-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX) =

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

34

The codes in SPA
non-ind

Noninductive argument; introA :
(
(x : K)× . . .

)
→ A.

K : Set γ : K → SPA(Xref)

non-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX) =

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

34

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .

35

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .

35

The codes in SPA
A-ind

Inductive argument in A; introA :
(
(g : K → A)× . . .

)
→ A.

K : Set γ : SPA(Xref + K)

A-ind(K , γ) : SPA(Xref)

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX) =

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

In later arguments, we can refer to

Xref ∪ {g(x)|x ∈ K} ⊆ X ,

represented by [repX, g] : Xref + K → X .
35

The codes in SPA
B-ind

Inductive argument in B; introA :
(
(g : (x : K)→ B(i(x)))× . . .

)
→ A.

K : Set hindex : K → Xref γ : SPA

B-ind(K , hindex, γ) : SPA

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX)=

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

ArgA(Xref ,B-ind(K , hindex, γ),X ,Y , repX) =

(g : (x : K)→ Y ((repX ◦ hindex)(x)))× ArgA(Xref , γ,X ,Y , repX)

36

The codes in SPA
B-ind

Inductive argument in B; introA :
(
(g : (x : K)→ B(i(x)))× . . .

)
→ A.

K : Set hindex : K → Xref γ : SPA

B-ind(K , hindex, γ) : SPA

ArgA(Xref , nil,X ,Y , repX)= 1

ArgA(Xref , non-ind(K , γ),X ,Y , repX)=

(x : K)× ArgA(Xref , γ(x),X ,Y , repX)

ArgA(Xref ,A-ind(K , γ),X ,Y , repX)=

(g : K → X)× ArgA(Xref + K , γ,X ,Y , [repX, g])

ArgA(Xref ,B-ind(K , hindex, γ),X ,Y , repX) =

(g : (x : K)→ Y ((repX ◦ hindex)(x)))× ArgA(Xref , γ,X ,Y , repX)

36

An example

The constructor
. : ((Γ : Ctxt)× Ty(Γ))→ Ctxt

is represented by the code

γ. = A-ind(1,B-ind(1, λ(? : 1) . inr(?), nil))

We have

ArgA(0, γ.,Ctxt,Ty, !Ctxt) = (Γ : 1→ Ctxt)× (1→ Ty(Γ(?)))× 1
∼= (Γ : Ctxt)× Ty(Γ)

37

The codes in SPB

The universe SP0
B : SP0

A → Set is similar to SP0
A.

Need argument SP0
A to know the shape of constructor for the first

set, which can appear in indices.

We omit the definition here.

38

Meta-theory

Soundness

Theorem (Soundness)

Standard Martin-Löf Type Theory with inductive-inductive definitions is
sound.

Remark

Can also include e.g. large elimination, function extensionality, uniqueness
of identity proofs, and equality reflection.

This is achieved by constructing a naive set-theoretical model.

The untyped nature of set-theory is exploited to reduce
inductive-inductive definitions to mutual inductive definitions.

The model is too naive to validate e.g. univalence or parametricity.

39

Soundness

Theorem (Soundness)

Standard Martin-Löf Type Theory with inductive-inductive definitions is
sound.

Remark

Can also include e.g. large elimination, function extensionality, uniqueness
of identity proofs, and equality reflection.

This is achieved by constructing a naive set-theoretical model.

The untyped nature of set-theory is exploited to reduce
inductive-inductive definitions to mutual inductive definitions.

The model is too naive to validate e.g. univalence or parametricity.

39

Soundness

Theorem (Soundness)

Standard Martin-Löf Type Theory with inductive-inductive definitions is
sound.

Remark

Can also include e.g. large elimination, function extensionality, uniqueness
of identity proofs, and equality reflection.

This is achieved by constructing a naive set-theoretical model.

The untyped nature of set-theory is exploited to reduce
inductive-inductive definitions to mutual inductive definitions.

The model is too naive to validate e.g. univalence or parametricity.

39

Generic programming

The axiomatisation is given as a universe of codes for
inductive-inductive definitions.

Many advantages:

Finite axiomatisation.

Small trusted core type theory.

Generic programming becomes normal programming.

40

Concrete advantages

Deriving e.g. functor instances.

Proving decidable equality for finitary inductive-inductive definitions.

Formal embedding of ordinary and indexed inductive definitions into
inductive-inductive definitions.

All available to the user of the theory, inside the theory, and
extensible by the user.

41

Reducing a weak version to IID

A weak version of the theory of inductive-inductive definitions can be
reduced to the (extensional) theory of indexed inductive definitions.

Implicitly used by Conway (and Mamane) for the surreal numbers
(games).

Weak since restricted elimination rules: Only motives of the form

P : A→ Set

Q : (x : A)→ B(x)→ Set

instead of the general motive

P : A→ Set

Q : (x : A)→ B(x)→ P(x)→ Set

(the “recursive-recursive” eliminator).

42

The high-level idea

Define simultaneously

Apre : Set Bpre : Set

ignoring dependencies of B on A.

Then select A ⊆ Apre, B ⊆ Bpre that satisfy the typing by two
inductively defined predicates

Agood : Apre → Set

Bgood : Apre → Bpre → Set

(indexed inductive definitions).

Interpretation

JAK = Σ x : Apre .Agood(x)

JBK(〈x , xg 〉) = Σ y : Bpre .Bgood(x , y)

43

Categorical characterisation

Ordinary inductive types can be characterised as initial algebras.

Indexed inductive types can be characterised as initial algebras on
slice categories.

Is there a corresponding result for inductive-inductive types?

Yes, but need to use dialgebras f : F (X)→ G (X) and not just
algebras g : F (X)→ X .

Theorem (extensional type theory)

For every inductive-inductive definition (A,B), there is a category
EA,B ↪→ Dialg(FA,B ,G) such that the elimination rules for (A,B) hold if
and only if EA,B has an initial object.

Main obstacle: Initiality gives non-dependent functions, elimination rules
dependent.

44

Categorical characterisation

Ordinary inductive types can be characterised as initial algebras.

Indexed inductive types can be characterised as initial algebras on
slice categories.

Is there a corresponding result for inductive-inductive types?

Yes, but need to use dialgebras f : F (X)→ G (X) and not just
algebras g : F (X)→ X .

Theorem (extensional type theory)

For every inductive-inductive definition (A,B), there is a category
EA,B ↪→ Dialg(FA,B ,G) such that the elimination rules for (A,B) hold if
and only if EA,B has an initial object.

Main obstacle: Initiality gives non-dependent functions, elimination rules
dependent.

44

Categorical characterisation

Ordinary inductive types can be characterised as initial algebras.

Indexed inductive types can be characterised as initial algebras on
slice categories.

Is there a corresponding result for inductive-inductive types?

Yes, but need to use dialgebras f : F (X)→ G (X) and not just
algebras g : F (X)→ X .

Theorem (extensional type theory)

For every inductive-inductive definition (A,B), there is a category
EA,B ↪→ Dialg(FA,B ,G) such that the elimination rules for (A,B) hold if
and only if EA,B has an initial object.

Main obstacle: Initiality gives non-dependent functions, elimination rules
dependent.

44

Status in proof assistants

Not supported in Coq or Epigram.

Is supported in Agda and Idris!

Now we know it is sound as well.

I Not obvious; e.g. both Agda and Idris accepts a universe U with a
code Û : U for itself. . .

I However, other parts of the system (the strict positivity check) happen
to prevent inconsistency.

I Nonetheless, what is the semantic justification?

45

Status in proof assistants

Not supported in Coq or Epigram.

Is supported in Agda and Idris!

Now we know it is sound as well.

I Not obvious; e.g. both Agda and Idris accepts a universe U with a
code Û : U for itself. . .

I However, other parts of the system (the strict positivity check) happen
to prevent inconsistency.

I Nonetheless, what is the semantic justification?

45

Status in proof assistants

Not supported in Coq or Epigram.

Is supported in Agda and Idris!

Now we know it is sound as well.

I Not obvious; e.g. both Agda and Idris accepts a universe U with a
code Û : U for itself. . .

I However, other parts of the system (the strict positivity check) happen
to prevent inconsistency.

I Nonetheless, what is the semantic justification?

45

Summary

Summary

When using Type Theory, one naturally wants more advanced data
structures such as inductive-inductive definitions.

Expressivity rather than strength.

But still has an interesting meta-theory.

More details in my thesis.

46

Summary

When using Type Theory, one naturally wants more advanced data
structures such as inductive-inductive definitions.

Expressivity rather than strength.

But still has an interesting meta-theory.

More details in my thesis.

46

Thanks!

	Introduction
	Toy example: dense completion

	A brief history of inductive types
	How can we talk about all inductive definitions?
	More advanced data types

	Inductive-inductive definitions
	What is it?

	Examples of inductive-inductive definitions
	Contexts and types
	Surreal numbers

	A finite axiomatisation
	A universe of codes

	Meta-theory
	Soundness
	Generic programming
	Reducing a weak version to IID
	Categorical characterisation
	Proof assistants

	Summary

