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The usefulness of ordinals

Give semantics to inductive data types.
Construct initial algebras by transfinite iteration.

Justify recursion and termination of programs.
Construct a strictly decreasing measure.

Determine the proof-theoretic strength of a formal system T .
Find least ordinal α such that T cannot prove α well ordered.

Interesting structure in their own right.
For example with rich theory of arithmetic.

Want to do this internally to our type theory/topos/programming language
=⇒ Want a constructive theory of ordinals.
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Ordinals in set theory

There are many classically equivalent notions of ordinals in set theory. The
following is constructively acceptable [Powell 1975, Aczel–Rathjen 2010].

Def. A set x is transitive if z ∈ y and y ∈ x implies z ∈ x .

Def. A set-theoretic ordinal is a transitive set whose elements are all
transitive.

Examples 0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, . . . , N := {0, 1, 2, . . .}, . . . are
all set-theoretic ordinals.
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Ordinals in homotopy type theory
In type theory, the statement “z : y and y : x implies z : x” makes no
sense. The HoTT book [§ 10.3] instead defines ordinals as follows.

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary
relation < that is transitive, extensional and wellfounded.

Example (N, <) is a type-theoretic ordinal.

Extensionality means that we have

x = y ⇐⇒ ∀(u : X ).(u < x ⇐⇒ u < y)

It follows that X is an hset.

Wellfoundedness is defined in terms of accessibility, but is equivalent to
transfinite induction: for every P : X → U , we have Π(x : X ).P(x) as soon
as Π(x : X ).(Π(y : X ).(y < x → P(y))) → P(x).
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The ordinal of type-theoretic ordinals

We write Ord for the type of (small) type-theoretic ordinals.

Thm. (HoTT Book 10.3.20) The type Ord is itself a (large)
type-theoretic ordinal with relation ≺ given by

α ≺ β ⇐⇒ α is an initial segment of β

⇐⇒ Σ(y : β).(α = β ↓ y)

where we write β ↓ y for the (sub)ordinal Σ(x : β).(x < y).

That is, ≺ is prop-valued, transitive, extensional and wellfounded.
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The cumulative hierarchy in HoTT

HoTT hosts a model (V, ∈) of a constructive set theory, known as the
cumulative hierarchy [HoTT book §10.5].

The type V is a higher inductive type with point constructor

V-set :
(
Σ(A : U).(A → V)

)
→ V

quotiented by bisimilarity: V-set(A, f ) and V-set(B, g) are identified
exactly when f and g have the same image.

For example, the empty set is represented by V-set(0, 0-rec), and if x : V,
then the singleton {x} is represented by V-set(1, λ(u : 1).x).

This is a refinement of Aczel’s 1978 model of CZF in type theory (see also
Gylterud [2018]).
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The ordinal of set-theoretic ordinals

Def. We define set-membership ∈ : V → V → Prop by

x ∈ V-set(A, f ) :≡ ∃(a : A).f (a) = x

Using ∈, we define the subtype Vord of V of set-theoretic ordinals in HoTT:

Vord :≡ Σ(x : V).is-set-theoretic-ordinal(x)

The cumulative hierarchy V validates the axioms of ∈-extensionality and
∈-induction. Since Vord is restricted to hereditarily transitive sets, we get:

Thm. (Vord, ∈) is a type-theoretic ordinal.
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Set-theoretic and type-theoretic ordinals coincide

Thm. (Vord, ∈) and (Ord, ≺) are equivalent as ordinals. Hence, by
univalence, they are equal.

Thus, in HoTT,
set-theoretic and type-theoretic ordinals coincide.
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From type-theoretic ordinals to set-theoretic ordinals

Define Φ : Ord → Vord by transfinite recursion:

Φ(α) :≡ V-set(α, λ(a : α).Φ(α ↓ a)).

This is well-defined, because (α ↓ a) ≺ α, and the fact that ≺ on Ord is
wellfounded.
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From set-theoretic ordinals to type-theoretic ordinals

The map Ψ : Vord → Ord is the rank function:

Ψ(V-set(A, f )) :≡
∨
a:A

(Ψ(f (a)) + 1),

where
∨

denotes the supremum of ordinals, which exists for any small
family of ordinals [de Jong–Escardó 2023].

It is possible to give nonrecursive descriptions of the rank:

Ψ(x) ≃ Σ(y : V).y ∈ x and Ψ(V-set(A, f )) = A/∼,

where a ∼ b ⇐⇒ f (a) = f (b). (But be careful about size.)

9/14



From set-theoretic ordinals to type-theoretic ordinals

The map Ψ : Vord → Ord is the rank function:

Ψ(V-set(A, f )) :≡
∨
a:A

(Ψ(f (a)) + 1),

where
∨

denotes the supremum of ordinals, which exists for any small
family of ordinals [de Jong–Escardó 2023].

It is possible to give nonrecursive descriptions of the rank:

Ψ(x) ≃ Σ(y : V).y ∈ x and Ψ(V-set(A, f )) = A/∼,

where a ∼ b ⇐⇒ f (a) = f (b). (But be careful about size.)

9/14



Set-theoretic and type-theoretic ordinals coincide

Thm. The type-theoretic ordinals (Vord, ∈) and (Ord, ≺) are equivalent.

Proof sketch The maps Φ : Ord → Vord and Ψ : Vord → Ord give an
isomorphism of ordinals. In particular,

α ≺ β ⇐⇒ Φ(α) ∈ Φ(β) and x ∈ y ⇐⇒ Ψ(x) ≺ Ψ(y).
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Capturing all of the cumulative hierarchy

Can we realize all of V as a type of ordered structures?

That is, can we find a type making the square

Vord Ord

V ?

≃

≃

commute?

An initial first attempt may be to simply drop transitivity, i.e., to take

? = type of extensional wellfounded relations.

This does not work for cardinality reasons: there are more subsets of
{∅, {∅}} than extensional wellfounded relations embedding into 0 < 1.
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Covered marked extensional wellfounded relations

Instead, we consider extensional wellfounded relations (A, <) with a
marking: a predicate on A that picks out the top-level elements of a set.

A marking is covering if any element can be reached from a marked
element, i.e., if the relation contains no “junk”.

Similar ideas of encoding sets as wellfounded structures can be found in
Osius [1974], Aczel [1977, 1988], Taylor [1996], and Adamek et al. [2013].

Def. We write MEWOcov for the type of covered marked extensional
wellfounded order relations.

Every ordinal can be equipped with the trivial covering by marking
everything (and forgetting transitivity). Hence Ord embeds into
MEWOcov.
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Sets and covered marked extensional wellfounded relations
are the same

Vord Ord

V MEWOcov

≃

To show V = MEWOcov, we construct a mewo of mewos, and show that V
and MEWOcov are equivalent as mewos, by generalising the constructions
for Vord and Ord. (Coveredness crucial for well-definedness of mewo
version of “ + 1”.)

In particular, this gives a “non-inductive” presentation of the cumulative
hierarchy V.
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Summary
In HoTT, the set-theoretic ordinals in V coincide with the type-theoretic
ordinals.

By generalising from type-theoretic ordinals to covered mewos, we capture
all sets in V.

Question: Can we similarly capture non-wellfounded sets as certain graphs
in HoTT?

Set-Theoretic and Type-Theoretic Ordinals Coincide.
Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie
Xu. arXiv:2301.10696. To appear at LICS’23.

Full Agda formalisation.
Building on Escardó’s TypeTopology, and the agda/cubical library.
https://tdejong.com/agda-html/st-tt-ordinals/
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