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Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w% ... ,w+6,...

Another answer: The essence of termination.

W > wA+657 > w-4+656 > ... >wd>w3+9453> ... >w>19>...>0

Set theory answer: a transitive, wellfounded and extensional order (cf. Taylor
[1996]).



Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets
equipped with an order <, which is

> transitive: (a<b)—=(b=<c)—(a<c)
» wellfounded: transfinite induction along < is valid

» and extensional: (Va.a<b<>a<c)—b=c



Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets
equipped with an order <, which is

> transitive: (a<b)—=(b=<c)—(a<c)
» wellfounded: transfinite induction along < is valid
» and extensional: (Va.a<b<>a<c)—b=c

Theorem (Escardo [2022])

The type Ord has a non-trivial decidable property if and only if weak excluded
middle =P & ——P holds.

This motivates a search for representations of ordinals that can be more useful
constructively.



What has the ordinals ever done for us?

Two typical uses of ordinals:
» Transfinite iteration of operators

» Termination of processes
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Transfinite iteration

Let F': Set — Set be a functor preserving k-colimits.

The initial algebra of F' can be constructed as the colimit of the sequence
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Transfinite iteration
Let F': Set — Set be a functor preserving k-colimits.
The initial algebra of F' can be constructed as the colimit of the sequence

I F(

2
Xy —- X, 0

X, X, Xoi . X,

Xo=10

Xot1 = F(X,)
Xy = colimg.y X3
pk = Xy



Transfinite iteration

Let F': Set — Set be a functor preserving k-colimits.
The initial algebra of F' can be constructed as the colimit of the sequence

| F() F2(1)

Xy —— X, X, X, Xoi . X,
where
XO — @
Xa+1 = F(on)
XA = colim5<)\ Xg
k=X,

Useful: Definitional principle where ordinals are classified as 0, o + 1 or a limit.
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Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |[Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

2 -3 3
0 @' 41 W T+ 0® + 1

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.
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Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Problems:
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A refined type of Brouwer tree ordinals

data
ze
su
1i
bi

trunc : isSet Brw

data

IAN A A TA A A

v

Brw where
ro : Brw
cc : Brw - Brw note: r <y
mit : (f : N - Brw) - {ft+ : increasing f} - Brw
sim : vV £ {ft} g {gt} - means succx <y

f:g-w

limit f {ft} = limit g {gt} f =~ g means

Vk.3n.f(k) < g(n)

_=_where and vice versa
-Zero ¥ {x} - zero = X
-trans Vi{XxXyz} - X=sy-y=2z-Xxzsz2
-succ-mono : V¥V {X Yy} - X =y - sSuUCC X = succ y
-cocone ¥ {x} f {frt k} - (x = f K) - (x = limit f {ft})
-limiting vV f {ft x} - ((k:N)-fks=sx) - limit f {ft} = x
-trunc ¥V {x y} - isProp (x = vy)

Induction-induction (N.-F. [2013]): limits can only be taken of increasing sequences; J

» Path constructor (Lumsdaine and Shulman [2020]): bisimilar sequences have equal limits.




Recursion and induction principles for Brw
To define f: Brw — X for X : Set, it suffices to give

fzero= 7
f(succx) = 7 (given fx)
f(limitg) = 7?9 (given f (gi) for any i : N)

such that f (limitg) = f (limit h) whenever g ~ h.



Recursion and induction principles for Brw
To define f: Brw — X for X : Set, it suffices to give

fzero= 7
f (succzx) = (given fx)
f(limitg) = (given f (gi) for any i : N)

such that f (limitg) = f (limit h) whenever g =~ h.
To prove Y(z : Brw). P(z) for P : Brw — Prop, it suffices to give

Drero - P zero
Psucc 2 P — P (succz)

pimic g : (V(i: N). P(gi)) — P (limitg)

(Note Piimit ¢ = Piimit b for g = h follows always, since P is Prop-valued.)



Example: multiplication

Seemingly straightforward definition:
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x - (limit f) = limit (A\i. 2 - f;)
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Example: multiplication

Seemingly straightforward definition:

T - ZEro = zero
x-(succy)=z-y+x
x - (limit f {incr-f}) with decZero x
... | yes x=0 = zero
.. |noxz0 = limit (Ai. z - f;) {x--increasing xZ£0 incr-f}

Butl Xi.zero - f; is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

10



Basic feasibility

Everything that one can “reasonably expect” works:
» < is wellfounded and extensional;
< is antisymmetric;
limits are actually limits;

>

>

» zero # succz, succx # limit g, etc;

» arithmetic operations can be defined and proven correct;
>

and so on.

11



Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
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Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the < relation.

That is, we define
Code : Brw — Brw — Prop

such that Codezy = (z < vy).

For example:

Code (succz) (limit f) = (In : N) (Code (succz) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (z < y) — Codezy.

12



Decidability properties

P is decidable if we can prove Dec P := P W —P.

data Brw where
zero : Brw

succ : Brw — Brw

limit : (N 2% Brw) — Brw
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Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. v =57
Sure: No for zero and limits; for succy, check whether y = 4.
3. > 1037
Sure: No for zero, yes for limits; for succy, check whether y > 102.
4. x> w?

Can decide it for zero and succ, but:  limit(zg, x1, 2, ...) > w?

13



When is |imit(l’0,£€1,$2, .. > >w !

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.

14



When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.

» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.
» So if we could decide between these two possibilities, we could decide

limit(zg, x1, z2,...) > w.

14



When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.
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When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.
» So if we could decide between these two possibilities, we could decide
limit(zg, x1, z2,...) > w.

Indeed if we assume the lesser principle of omniscience
LPO :=V(s: N — Bool).(Vn.s,, = false) W (In.s, = true).

the question x > w is decidable. Conversely:

Theorem
(Vz : Brw.Dec (z > w)) <+ LPO

14



Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

1 w+n if there is kK < n such that s, = true
s'n =
n else.

15



Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

N {w +mn if there is k < n such that s, = true
s'n =

n else.

Then: (limit s’ > w) <> (Fk.sp = true).

Key lemma: If y < limit f, then Jk.y < f k.
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Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

1 w+n if there is kK < n such that s, = true
s'n =
n else.

Then: (limit s’ > w) <> (Fk.sp = true).
Key lemma: If y < limit f, then Jk.y < f k.

Hence if we can decide limit sT > w, we know whether Vn.s,, = false or
dn.s,, = true.

15



Many decidability statements for Brw are equivalent to LPO

Using similar proof ideas, we can show:

Theorem
For the type of Brouwer trees, the following statements are equivalent:

(i) LPO

(ii) Vz,y.Dec(z < y)
(iii) Va,y.Dec(z < y)
(iv) Vz,y.Dec(z = y)
(v) Va.Dec(w < z)
(vi) Vz.Dec(z = w - 2)

16



A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = 8+ a)) — (Vz.Dec(x = a))
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))
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A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = f+ ) = (Vz.Dec(z = )
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))

Proof sketch.
For (i), note that addition is left cancellative:

f+r=B+a+rrv=a

For (ii), we can decide if = starts with k& successors or not.

17



Equality with w - n + &

Theorem
Let x : Brw. We have:

Dec(z = k) <> True

Dec(z = w - 2) «» LPO
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Theorem
Let x : Brw. We have:
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Equality with w - n + &
Theorem

Let x : Brw. We have:

Dec(z = k) <> True
Dec(z = w + k) <> WLPO
Dec(z =w - (n+2)+ k) < LPO

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)
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Equality with w - n + &
P is = —-stable if we can prove Stable P := (——P — P).

Theorem
Let x : Brw. We have:

Dec(z = k) <> True Stable(z = k) <> True
Dec(x = w + k) <> WLPO Stable(z = w + k) < True
Dec(z =w - (n+2)+ k) < LPO Stable(z =w - (n+2)+ k) = MP

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)
MP := V(s : N — Bool).=(Vn.s,, = false) — (3n.s,, = true)
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Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

Proof sketch.
(i) = (ii): LPO implies =(x < y) — y < . Use LPO to decide z < y and y < x.
(ii) = (iii): We cannot have both y < x and = <y by irreflexivity.

L]
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Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

Proof sketch.

(i) = (ii): LPO implies =(x < y) — y < . Use LPO to decide z < y and y < x.
(ii) = (iii): We cannot have both y < x and = <y by irreflexivity.

(i) = (i): We always have s" < w-2. Further s" = w -2 <> k.5 = true. [
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Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse
operations such as subtraction, division, etc.

Definition
A notion of ordinals A has subtraction, if there is an operation

(b:A) = (a:A) = (p:a<b) — A, written b —, a, such that a + (b —, a) = b.

Perhaps surprisingly, having subtraction is a constructive taboo for Brw:

Theorem
Brw has subtraction if and only if LPO holds.
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Proof sketch.

If Brw has subtraction and p : <y, then x = y iff y —, x = 0, which is always
decidable.
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Conversely, note that “having subtraction” is a proposition by left cancellation:
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Subtraction is a taboo

Theorem
Brw has subtraction if and only if < splits, i.e. (x <y) — (z <y)W (z =y).

Proof sketch.
If Brw has subtraction and p : <y, then x = y iff y —, x = 0, which is always
decidable.

Conversely, note that “having subtraction” is a proposition by left cancellation:
vy —pr)=y=v+@y—pa) so(y—pz)=(y—pz)

Hence we can define y —, « by induction on y. Splitting p, we define y —,y =0,
and if z < y, we can use the induction hypothesis to finish the definition. [
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Binary joins

We only compute limits of increasing sequences limit (sg, $1, Sa,...). What if we
relaxed this requirement?

Simplest case: the binary join a Ub = limit (a, b,b,b,...).

Theorem

If y =n for a finite n, or y = w, we can define a function (— Uy) : Brw — Brw
calculating the binary join with y.
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Binary joins

We only compute limits of increasing sequences limit (sg, $1, Sa,...). What if we
relaxed this requirement?

Simplest case: the binary join a Ub = limit (a, b,b,b,...).

Theorem

If y =n for a finite n, or y = w, we can define a function (— Uy) : Brw — Brw
calculating the binary join with y.

However this is as far as we can go; already computing z U (w + 1) is a
constructive taboo.

Theorem
LPO implies (— U (w + 1)) can be calculated, which in turn implies WLPO.

22






Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

23



Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit st > w < Jk.s;, = true.

23



Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit sT > w < Jk.s;, = true.
Fact: For any proposition P,
3y : Brw) (P > (y > w)) — 3(s : N — Bool) (P «» Jk.sj, = true)

“ P decidable in w steps” “ P semidecidable”

23



Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit sT > w < Jk.s;, = true.

Fact: For any proposition P,

3y : Brw) (P > (y > w)) — 3(s : N — Bool) (P «» Jk.sj, = true)
“ P decidable in w steps” “ P semidecidable”

What if we swap w for another ordinal o?

Definition
P is decidable in o steps if 3(y : Brw) (P <> (y > ).
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Fewer than w steps

Theorem
Let n be a natural number. Then:

Iy : Brw) (P < (y > n))
“P decidable in n steps”

Pw-P
“P decidable”

24



More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It is clearly semidecidable whether there is a twin pair > 101909000 byt TPC
does not seem to be semidecidable.
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More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It is clearly semidecidable whether there is a twin pair > 101909000 byt TPC
does not seem to be semidecidable.

However, one can show:

(y : Brw) (TPC < (y > w2))

“TPC is decidable in w? steps.”

25



TPC's ordinal

Define a sequence f : N — Brw by:
f0=zero

flnt1)= {(fn)—l—l else.

Claim
(‘v’n.EIp >n.p, p+2 are prime) < limitf =w

2

(fn)+w ifnandn+ 2 are prime

< succ(limit f) > w

2
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TPC's ordinal

Define a sequence f : N — Brw by:
f0=zero

fln+1) = (fn)+w ifnandn+ 2 are prime
(fn)+1 else

Claim
(Vn.3p > n. p, p+ 2 are prime) <« limit f = w? <> succ(limit f) > w
Proof sketch TPC — (limit f = w?).

For any n, we find p > n s.t. f(p) > w - p, thus limit f > w - w.
At the same time, f never exceeds w?.

2
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TPC's ordinal

Define a sequence f : N — Brw by:

f0=zero
rory-{

(fn)+w ifn andn+ 2 are prime
(fn)+1 else.

Claim
(Vn.3p > n. p, p+ 2 are prime) <« limit f = w? <« succ(limit f) > w?

Proof sketch (limit f > w?) — TPC.

For every n,  (limit f > w?) Fk.fr>w-(n+1)
Jk.——( f(p) jumped for some n < p < k)

k. f(p) jumped for somen < p <k

L4

there is a twin prime pair (p,p + 2) above n
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