Constructive taboos for ordinals

Fredrik Nordvall Forsberg

joint work with Nicolai Kraus and Chuangjie Xu

Tallinn Computer Science Theory seminar

online, 6 October 2022

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1,

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w . ., w+6,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2, ..., w,w+1Lw+2,...,w-2,...,w% ...

Another answer: The essence of termination.

,w’ +6,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2, ..., w,w+1Lw+2,...,w-2,...,w% ...

Another answer: The essence of termination.

w2>

,w’ +6,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2, ..., w,w+1Lw+2,...,w-2,...,w% ...

Another answer: The essence of termination.

w? > w-4+657 >

,w’ +6,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2, ..., w,w+1Lw+2,...,w-2,...,w% ...

Another answer: The essence of termination.

w? > w-4+657 > w-44+656 >

,w’ +6,...

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w . ., w+6,...

Another answer: The essence of termination.

w? > wA4+657 > w-44+656 > ... > w-4d >

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w . ., w+6,...

Another answer: The essence of termination.

w? > w-44+657 > w-44+656 > ... > w4 > w-3+9453 >

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w . ., w+6,...

Another answer: The essence of termination.

W > wA+657 > w-4+656 > ... >wd>w3+9453 > ... > w >

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w . ., w+6,...

Another answer: The essence of termination.

W > wA+657 > w-4+656 > ... >wd>w3+9453 > ... >w>19> ...

>0

Ordinals

What is an ordinal number?

One answer: The essence of counting beyond the finite.

0,1,2,...,w,w+1Lw+2,...,w-2,...,w% ... ,w+6,...

Another answer: The essence of termination.

W > wA+657 > w-4+656 > ... >wd>w3+9453> ... >w>19>...>0

Set theory answer: a transitive, wellfounded and extensional order (cf. Taylor
[1996]).

Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets
equipped with an order <, which is

> transitive: (a<b)—=(b=<c)—(a<c)
» wellfounded: transfinite induction along < is valid

» and extensional: (Va.a<b<>a<c)—b=c

Transitive, wellfounded and extensional orders

The Homotopy Type Theory Book defines the type Ord as the type of sets
equipped with an order <, which is

> transitive: (a<b)—=(b=<c)—(a<c)
» wellfounded: transfinite induction along < is valid
» and extensional: (Va.a<b<>a<c)—b=c

Theorem (Escardo [2022])

The type Ord has a non-trivial decidable property if and only if weak excluded
middle =P & ——P holds.

This motivates a search for representations of ordinals that can be more useful
constructively.

What has the ordinals ever done for us?

Two typical uses of ordinals:
» Transfinite iteration of operators

» Termination of processes

Transfinite iteration

Let F': Set — Set be a finitary functor.

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

Xo Xy X

where

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

Xo Xy X

where

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

Xo X, X,
where

XO — @
Xn+1 = F(Xn)

Transfinite iteration

Let F': Set — Set be a finitary functor.
The initial algebra of F' can be constructed as the colimit of the sequence

Xo—Xy Xo

where

XO - @
Xni1 = F(X,)

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

X, ! X, F()

Xo
where

XO — @
Xn+1 = F(Xn)

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

2
Xyt x, FOx, PO

where

XO — @
Xn+1 = F(Xn)

Transfinite iteration

Let F': Set — Set be a finitary functor.

The initial algebra of F' can be constructed as the colimit of the sequence

2
Xyt x, FOx, PO

where

XO - @
Xn+1 = F(Xn)
pk = X, = colimg, Xz

Transfinite iteration

Let F': Set — Set be a functor preserving k-colimits.

The initial algebra of F' can be constructed as the colimit of the sequence

2
Xo—-x, 2, Y x

where

XO - @
Xn+1 = F(Xn)
X, = colimg., Xp

Transfinite iteration

Let F': Set — Set be a functor preserving k-colimits.

The initial algebra of F' can be constructed as the colimit of the sequence

2
Xo——=x, 2, Y X X ——

where

XO - @
Xa+1 = F(on)
XA = CO|im5<)\Xg

Transfinite iteration
Let F': Set — Set be a functor preserving k-colimits.
The initial algebra of F' can be constructed as the colimit of the sequence

I F(

2
Xy —- X, 0

X, X, Xoi . X,

Xo=10

Xot1 = F(X,)
Xy = colimg.y X3
pk = Xy

Transfinite iteration

Let F': Set — Set be a functor preserving k-colimits.
The initial algebra of F' can be constructed as the colimit of the sequence

| F() F2(1)

Xy —— X, X, X, Xoi . X,
where
XO — @
Xa+1 = F(on)
XA = colim5<)\ Xg
k=X,

Useful: Definitional principle where ordinals are classified as 0, o + 1 or a limit.

Termination of processes

» Programs terminating |[Turing 1949]
» Consistency proof e.g. of Peano's axioms [Gentzen 1936]

» Termination of Goodstein sequences |Goodstein 1944], the Hydra game
[Kirby& Paris 1982]:

Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |[Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

WEW .

Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |[Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |[Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

Termination of processes

» Programs terminating [Turing 1949)]
» Consistency proof e.g. of Peano's axioms |Gentzen 1936]

» Termination of Goodstein sequences |[Goodstein 1944], the Hydra game
[Kirby&Paris 1982]:

2 -3 3
0 @' 41 W T+ 0® + 1

Useful: Arithmetic, and every decreasing sequence of ordinals hits 0.

A spectrum of ordinal notions

decidable Cantor normal forms

|

artiall
P y Brouwer trees

decidable

undecidable Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Connecting constructive notions of ordinals in homotopy type theory
MFCS 2021.

A spectrum of ordinal notions

decidable Cantor normal forms

(

Brouwer trees
n

partially
decidable

undecidable Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Connecting constructive notions of ordinals in homotopy type theory
MFCS 2021.

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero : B
succ: B — B
limit : (N — B) — B

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Problems:
limit (0,1,2,3,...) # limit(2,3,...)

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Problems:
limit (0,1,2,3,...) # limit(2,3,...)

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Problems:
limit (0,1,2,3,...) # limit(2,3,...)
limit (0,1,2,3,...) # limit(0,2,1,3,...)

Brouwer ordinal trees in constructive type theory
Inductive type B of Brouwer trees [Brouwer 1926; Martin-Lof 1970]:
data B where
zero: B
succ: B— B
Examples: limit: (N— B) - B
w = limit(0,1,2,3,...)
w-2:=limitlw,w+1,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

Problems:
limit (0,1,2,3,...) # limit(2,3,...)
limit (0,1,2,3,...) # limit(0,2,1,3,...)

A refined type of Brouwer tree ordinals

data
ze
su
1i
bi

trunc : isSet Brw

data

IAN A A TA A A

v

Brw where
ro : Brw
cc : Brw - Brw note: r <y
mit : (f : N - Brw) - {ft+ : increasing f} - Brw
sim : vV £ {ft} g {gt} - means succx <y

f:g-w

limit f {ft} = limit g {gt} f =~ g means

Vk.3n.f(k) < g(n)

_=_where and vice versa
-Zero ¥ {x} - zero = X
-trans Vi{XxXyz} - X=sy-y=2z-Xxzsz2
-succ-mono : V¥V {X Yy} - X =y - sSuUCC X = succ y
-cocone ¥ {x} f {frt k} - (x = f K) - (x = limit f {ft})
-limiting vV f {ft x} - ((k:N)-fks=sx) - limit f {ft} = x
-trunc ¥V {x y} - isProp (x = vy)

Induction-induction (N.-F. [2013]): limits can only be taken of increasing sequences; J

» Path constructor (Lumsdaine and Shulman [2020]): bisimilar sequences have equal limits.

Recursion and induction principles for Brw
To define f: Brw — X for X : Set, it suffices to give

fzero= 7
f(succx) = 7 (given fx)
f(limitg) = 7?9 (given f (gi) for any i : N)

such that f (limitg) = f (limit h) whenever g ~ h.

Recursion and induction principles for Brw
To define f: Brw — X for X : Set, it suffices to give

fzero= 7
f (succzx) = (given fx)
f(limitg) = (given f (gi) for any i : N)

such that f (limitg) = f (limit h) whenever g =~ h.
To prove Y(z : Brw). P(z) for P : Brw — Prop, it suffices to give

Drero - P zero
Psucc 2 P — P (succz)

pimic g : (V(i: N). P(gi)) — P (limitg)

(Note Piimit ¢ = Piimit b for g = h follows always, since P is Prop-valued.)

Example: multiplication

Seemingly straightforward definition:

x - Zero = zero
x-(succy)=x-y+zx
x - (limit f) = limit (A\i. 2 - f;)

10

Example: multiplication

Seemingly straightforward definition:

x - Zero = zero
x-(succy)=x-y+zx
x - (limit f) = limit (A\i. 2 - f;)

Butl Xi.zero - f; is not increasing even if f is.

10

Example: multiplication

Seemingly straightforward definition:

x - Zero = zero
x-(succy)=x-y+zx
x - (limit f) = limit (A\i. 2 - f;)

Butl Xi.zero - f; is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

10

Example: multiplication

Seemingly straightforward definition:

T - ZEro = zero
x-(succy)=z-y+x
x - (limit f {incr-f}) with decZero x
... | yes x=0 = zero
.. |noxz0 = limit (Ai. z - f;) {x--increasing xZ£0 incr-f}

Butl Xi.zero - f; is not increasing even if f is.

Thankfully, we can decide if x is zero or not and act accordingly.

10

Basic feasibility

Everything that one can “reasonably expect” works:
» < is wellfounded and extensional;
< is antisymmetric;
limits are actually limits;

>

>

» zero # succz, succx # limit g, etc;

» arithmetic operations can be defined and proven correct;
>

and so on.

11

Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the < relation.

12

Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the < relation.

That is, we define
Code : Brw — Brw — Prop

such that Codezy = (z <vy).

12

Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the < relation.

That is, we define
Code : Brw — Brw — Prop

such that Codezy = (z <vy).

For example:

Code (succz) (limit f) = (In : N) (Code (succz) (f n))

12

Characterising < using encode-decode

Main proof technique: we use an encode-decode method [Licata and Shulman
2013] to characterise the < relation.

That is, we define
Code : Brw — Brw — Prop

such that Codezy = (z < vy).

For example:

Code (succz) (limit f) = (In : N) (Code (succz) (f n))

Technically involved: need to simultaneously prove transitivity, reflexivity of
Code, and (z < y) — Codezy.

12

Decidability properties

P is decidable if we can prove Dec P := P W —P.

data Brw where
zero : Brw

succ : Brw — Brw

limit : (N 2% Brw) — Brw

13

Decidability properties data Brw where

P is decidable if we can prove Dec P := P W —P.

If 2 is a Brouwer tree ordinal, is it decidable whether . ..

1. x is finite?

zero : Brw

succ : Brw — Brw

limit : (N 2% Brw) — Brw

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. x =57

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. x =57

Sure: No for zero and limits; for succy, check whether y = 4.

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. x =57

Sure: No for zero and limits; for succy, check whether y = 4.
3. x> 1037

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?

Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. v =57

Sure: No for zero and limits; for succy, check whether y = 4.
3. > 1037

Sure: No for zero, yes for limits; for succy, check whether y > 102.

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?

Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. v =57

Sure: No for zero and limits; for succy, check whether y = 4.
3. > 1037

Sure: No for zero, yes for limits; for succy, check whether y > 102.
4. x > w?

13

Decidability properties data Brw where
zero : Brw

P is decidable if we can prove Dec P := P W —P. succ : Brw — Brw

. incr
If x is a Brouwer tree ordinal, is it decidable whether ... limit : (N == Brw) — Brw

1. x is finite?
Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. v =57
Sure: No for zero and limits; for succy, check whether y = 4.
3. > 1037
Sure: No for zero, yes for limits; for succy, check whether y > 102.
4. x> w?

Can decide it for zero and succ, but: limit(zg, x1, 2, ...) > w?

13

When is |imit(l’0,£€1,$2, .. > >w !

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.

14

When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.

» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.
» So if we could decide between these two possibilities, we could decide

limit(zg, x1, z2,...) > w.

14

When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.

» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.
» So if we could decide between these two possibilities, we could decide
limit(zg, x1, z2,...) > w.

Indeed if we assume the lesser principle of omniscience
LPO :=V(s: N — Bool).(Vn.s,, = false) W (In.s, = true).

the question x > w is decidable.

14

When is limit(zg, 21, T2, ...) >w 7

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite z;, the question is decided positively.

» Only if all z; are finite, the answer is negative.
» So if we could decide between these two possibilities, we could decide
limit(zg, x1, z2,...) > w.

Indeed if we assume the lesser principle of omniscience
LPO :=V(s: N — Bool).(Vn.s,, = false) W (In.s, = true).

the question x > w is decidable. Conversely:

Theorem
(Vz : Brw.Dec (z > w)) <+ LPO

14

Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

1 w+n if there is kK < n such that s, = true
s'n =
n else.

15

Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

N {w +mn if there is k < n such that s, = true
s'n =

n else.

Then: (limit s’ > w) <> (Fk.sp = true).

Key lemma: If y < limit f, then Jk.y < f k.

15

Vz : Brw.Dec (z > w) implies LPO

Given s : N — Bool, we can construct an increasing sequence s’ : N — Brw by

1 w+n if there is kK < n such that s, = true
s'n =
n else.

Then: (limit s’ > w) <> (Fk.sp = true).
Key lemma: If y < limit f, then Jk.y < f k.

Hence if we can decide limit sT > w, we know whether Vn.s,, = false or
dn.s,, = true.

15

Many decidability statements for Brw are equivalent to LPO

Using similar proof ideas, we can show:

Theorem
For the type of Brouwer trees, the following statements are equivalent:

(i) LPO

(ii) Vz,y.Dec(z < y)
(iii) Va,y.Dec(z < y)
(iv) Vz,y.Dec(z = y)
(v) Va.Dec(w < z)
(vi) Vz.Dec(z = w - 2)

16

A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = 8+ a)) — (Vz.Dec(x = a))
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))

17

A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = 8+ a)) — (Vz.Dec(x = a))
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))

Proof sketch.
For (i), note that addition is left cancellative:

f+r=B+a—r=a

17

A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = 8+ a)) — (Vz.Dec(x = a))
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))

Proof sketch.
For (i), note that addition is left cancellative:

f+r=B+a+rrv=a

17

A slight generalisation

Lemma
For o, B : Brw and k : N, we have

(i) (Vz.Dec(x = f+) = (Vz.Dec(z =)
(i) (Vz.Dec(z = a)) <> (Vx.Dec(z = a+ k))

Proof sketch.
For (i), note that addition is left cancellative:

f+r=B+a+rrv=a

For (ii), we can decide if = starts with k& successors or not.

17

Equality with w - n + &

Theorem
Let x : Brw. We have:

Dec(z = k) <> True

Dec(z = w - 2) «» LPO

18

Equality with w - n + &

Theorem
Let x : Brw. We have:

Dec(z = k) <> True

Dec(z =w - (n+2)+ k) < LPO

18

Equality with w - n + &

Theorem
Let x : Brw. We have:

Dec(z = k) <> True
Dec(z =w+k) + 7
Dec(z =w - (n+2)+ k) < LPO

18

Equality with w - n + &
Theorem

Let x : Brw. We have:

Dec(z = k) <> True
Dec(z = w + k) <> WLPO
Dec(z =w - (n+2)+ k) < LPO

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)

18

Equality with w - n + &
P is = —-stable if we can prove Stable P := (——P — P).

Theorem
Let x : Brw. We have:

Dec(z = k) <> True Stable(z = k) < 7
Dec(z = w + k) <> WLPO Stable(z =w + k) <> ?
Dec(z =w - (n+2)+ k) < LPO Stable(x =w - (n+2)+ k) = 7

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)

18

Equality with w - n + &
P is = —-stable if we can prove Stable P := (——P — P).

Theorem
Let x : Brw. We have:

Dec(z = k) <> True Stable(z = k) <> True
Dec(x = w + k) <> WLPO Stable(x = w + k) <> ?
Dec(z =w - (n+2)+ k) < LPO Stable(x =w - (n +2) + k) = ?

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)

18

Equality with w - n + &
P is = —-stable if we can prove Stable P := (——P — P).

Theorem
Let x : Brw. We have:

Dec(z = k) <> True Stable(z = k) <> True
Dec(x = w + k) <> WLPO Stable(z = w + k) < True
Dec(z =w - (n+2)+ k) < LPO Stable(z =w - (n+2)+ k) = MP

WLPO := V(s : N — Bool).(Vn.s,, = false) W =(Vn.s,, = false)
MP := V(s : N — Bool).=(Vn.s,, = false) — (3n.s,, = true)

18

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord.

19

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

19

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

Proof sketch.
(i) = (ii): LPO implies =(x < y) — y < . Use LPO to decide z < y and y < x.

O

19

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

Proof sketch.
(i) = (ii): LPO implies =(x < y) — y < . Use LPO to decide z < y and y < x.
(ii) = (iii): We cannot have both y < x and = <y by irreflexivity.

L]

19

Trichotomy
Classically, ordinals satisfy (z < y) W (z =y) W (z > y).

This is true for Cnf, and equivalent to LEM for Ord. For Brw, we again have:

Theorem
For the type of Brouwer trees, the following are equivalent:

(i) LPO
(ii) trichotomy: Vx,y.(r < y)W (r =y) W (y < x)
(iii) splitting: Vo, y.(x <y) = (x <y) W (x = y).

Proof sketch.

(i) = (ii): LPO implies =(x < y) — y < . Use LPO to decide z < y and y < x.
(ii) = (iii): We cannot have both y < x and = <y by irreflexivity.

(i) = (i): We always have s" < w-2. Further s" = w -2 <> k.5 = true. [

19

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

20

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse
operations such as subtraction, division, etc.

20

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse
operations such as subtraction, division, etc.

Definition

A notion of ordinals A has subtraction, if there is an operation
(b:A) = (a:A) = (p:a<b) — A, written b —, a, such that a + (b —, a) = b.

20

Taboo arithmetic

The usual ordinal arithmetic operations can be defined for all notions of ordinals
we consider, and proven correct.

For Cantor Normal Forms, correctness crucially relies on defining inverse
operations such as subtraction, division, etc.

Definition
A notion of ordinals A has subtraction, if there is an operation

(b:A) = (a:A) = (p:a<b) — A, written b —, a, such that a + (b —, a) = b.

Perhaps surprisingly, having subtraction is a constructive taboo for Brw:

Theorem
Brw has subtraction if and only if LPO holds.

20

Subtraction is a taboo

Theorem
Brw has subtraction if and only if < splits, i.e. (x <y) — (z <y)W (z =y).

Proof sketch.

Subtraction is a taboo

Theorem
Brw has subtraction if and only if < splits, i.e. (x <y) — (z <y)W (z =y).

Proof sketch.

If Brw has subtraction and p : <y, then x = y iff y —, x = 0, which is always
decidable.

21

Subtraction is a taboo

Theorem
Brw has subtraction if and only if < splits, i.e. (x <y) — (z <y)W (z =y).

Proof sketch.
If Brw has subtraction and p : <y, then x = y iff y —, x = 0, which is always
decidable.

Conversely, note that “having subtraction” is a proposition by left cancellation:

T+ —pr)=y=2+(y—pz) so(y—pr)=(y—p)

21

Subtraction is a taboo

Theorem
Brw has subtraction if and only if < splits, i.e. (x <y) — (z <y)W (z =y).

Proof sketch.
If Brw has subtraction and p : <y, then x = y iff y —, x = 0, which is always
decidable.

Conversely, note that “having subtraction” is a proposition by left cancellation:
vy —pr)=y=v+@y—pa) so(y—pz)=(y—pz)

Hence we can define y —, « by induction on y. Splitting p, we define y —,y =0,
and if z < y, we can use the induction hypothesis to finish the definition. [

21

Binary joins

We only compute limits of increasing sequences limit (sg, $1, 2, - -

relaxed this requirement?

.). What if we

22

Binary joins

We only compute limits of increasing sequences limit (sg, $1, 2, - -

relaxed this requirement?

Simplest case: the binary join a Ub = limit (a, b,b,b,...).

.). What if we

22

Binary joins

We only compute limits of increasing sequences limit (sg, $1, Sa,...). What if we
relaxed this requirement?

Simplest case: the binary join a Ub = limit (a, b,b,b,...).

Theorem

If y =n for a finite n, or y = w, we can define a function (— Uy) : Brw — Brw
calculating the binary join with y.

22

Binary joins

We only compute limits of increasing sequences limit (sg, $1, Sa,...). What if we
relaxed this requirement?

Simplest case: the binary join a Ub = limit (a, b,b,b,...).

Theorem

If y =n for a finite n, or y = w, we can define a function (— Uy) : Brw — Brw
calculating the binary join with y.

However this is as far as we can go; already computing z U (w + 1) is a
constructive taboo.

Theorem
LPO implies (— U (w + 1)) can be calculated, which in turn implies WLPO.

22

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

23

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit st > w < Jk.s;, = true.

23

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit sT > w < Jk.s;, = true.
Fact: For any proposition P,
3y : Brw) (P > (y > w)) — 3(s : N — Bool) (P «» Jk.sj, = true)

“ P decidable in w steps” “ P semidecidable”

23

Semidecidability via Brouwer trees

Definition (Bauer [2006], cf. also Veltri [2017])
P is semidecidable if 3(s : N — Bool) (P < Jk.s), = true).

Recall construction of st with limit sT > w < Jk.s;, = true.

Fact: For any proposition P,

3y : Brw) (P > (y > w)) — 3(s : N — Bool) (P «» Jk.sj, = true)
“ P decidable in w steps” “ P semidecidable”

What if we swap w for another ordinal o?

Definition
P is decidable in o steps if 3(y : Brw) (P <> (y >).

23

Fewer than w steps

Theorem
Let n be a natural number. Then:

Iy : Brw) (P < (y > n))
“P decidable in n steps”

Pw-P
“P decidable”

24

More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It is clearly semidecidable whether there is a twin pair > 101909000 byt TPC
does not seem to be semidecidable.

25

More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It is clearly semidecidable whether there is a twin pair > 101909000 byt TPC
does not seem to be semidecidable.

However, one can show:

(y : Brw) (TPC < (y > w2))

“TPC is decidable in w? steps.”

25

TPC's ordinal

Define a sequence f : N — Brw by:
f0=zero

flnt1)= {(fn)—l—l else.

Claim
(‘v’n.EIp >n.p, p+2 are prime) < limitf =w

2

(fn)+w ifnandn+ 2 are prime

< succ(limit f) > w

2

26

TPC's ordinal

Define a sequence f : N — Brw by:
f0=zero

fln+1) = (fn)+w ifnandn+ 2 are prime
(fn)+1 else

Claim
(Vn.3p > n. p, p+ 2 are prime) <« limit f = w? <> succ(limit f) > w
Proof sketch TPC — (limit f = w?).

For any n, we find p > n s.t. f(p) > w - p, thus limit f > w - w.
At the same time, f never exceeds w?.

2

26

TPC's ordinal

Define a sequence f : N — Brw by:

f0=zero
rory-{

(fn)+w ifn andn+ 2 are prime
(fn)+1 else.

Claim
(Vn.3p > n. p, p+ 2 are prime) <« limit f = w? <« succ(limit f) > w?

Proof sketch (limit f > w?) — TPC.

For every n, (limit f > w?) Fk.fr>w-(n+1)
Jk.——(f(p) jumped for some n < p < k)

k. f(p) jumped for somen < p <k

L4

there is a twin prime pair (p,p + 2) above n

26

Summary

We have considered decidability aspects of different notions of ordinals.

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

Cantor normal forms
Brouwer trees

Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

“Decidability «» True” Cantor normal forms
Brouwer trees

Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

“Decidability «» True” Cantor normal forms
Brouwer trees

“Decidability «» (W)LEM" Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

“Decidability «» True” Cantor normal forms

“Finite decidability <+ True"

“Infinite decidability < (W)LPQ" Brouwer trees

“Decidability «» (W)LEM" Wellfounded, extensional, and transitive orders

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

“Decidability «» True” Cantor normal forms

“Finite decidability <+ True"

“Infinite decidability < (W)LPQ" Brouwer trees

“Decidability «» (W)LEM" Wellfounded, extensional, and transitive orders

In future: Connections with arithmetical hierarchy and synthetic computability theory.

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different notions of ordinals.

“Decidability «» True” Cantor normal forms

“Finite decidability <+ True"

“Infinite decidability < (W)LPQ" Brouwer trees

“Decidability «» (W)LEM" Wellfounded, extensional, and transitive orders

In future: Connections with arithmetical hierarchy and synthetic computability theory.

B N. Kraus, F. N-F., and C. Xu.
Type-Theoretic Approaches to Ordinals
arXiv:2208.03844

27

https://arxiv.org/abs/2208.03844

Summary

We have considered decidability aspects of different noti

“Decidability 1

“Finite decidability
“Infinite decidability

“Decidability <] §

In future: Conned!

B N. Kraus, F.

Type-Theoret

Thank youl

arXiv:2208.03844

ns of ordinals.

" Ind transitive orders

nthetic computability theory.

27

https://arxiv.org/abs/2208.03844

References

In order of appearance

>
>

>

Paul Taylor. 1996. “Intuitionistic sets and ordinals”. Journal of Symbolic Logic, 61(3):705-744.

Martin Escardé. 2022, “Indecomposability of ordinals”. Available at

https://wuw.cs.bham.ac.uk/ “mhe/TypeTopology/Ordinals.Indecomposable.html.

Alan Turing. 1949. “Checking a Large Routine”. In Report of a Conference on High Speed Automatic
Calculating Machines. University Mathematical Laboratory, Cambridge, UK, 67—69.

Gerhard Gentzen. 1936. “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Mathematische Annalen,
112: 493-565.

Reuben Goodstein. 1944. “On the restricted ordinal theorem”, Journal of Symbolic Logic, 9(2): 33-41.
Laurie Kirby and Jeff Paris. 1982. “Accessible Independence Results for Peano Arithmetic”. Bulletin of
the London Mathematical Society. 14(4): 285-293.

Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. 2021. “Connecting constructive notions of
ordinals in homotopy type theory”’. In MFCS'21, pages 70:1-70:16.

L. E. J. Brouwer. 1996. “Zur Begriindung der intuitionistischen Mathematik. Ill". Mathematische
Annalen, 96:451-488.

Per Martin-Lof. 1970. “Notes on constructive mathematics’. Almqvist & Wiksell, Stockholm.

Peter LeFanu Lumsdaine and Michael Shulman. 2020. “Semantics of higher inductive types".
Mathematical Proceedings of the Cambridge Philosophical Society, 169(1):159-208.

Daniel Licata and Michael Shulman. 2013. “Calculating the fundamental group of the circle in homotopy
type theory”. In LICS'13, pages 223-232.

Andrej Bauer. 2006. “First Steps in Synthetic Computability Theory”. in MFPS 2005, 5-31.

Niccolo Veltri. 2017. “A type-theoretic study of nontermination”, PhD thesis, Tallinn University of
Technology.

28

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.Indecomposable.html

