
My summer holiday
Extracting Haskell programs

Fredrik Nordvall Forsberg

Realizability seminar 13.02.2013

Implementing realizability

Theorem (Soundness)

Let M be a derivation of A from assumptions ui : Ci (i < n). Then we can
derive et(M) r A from assumptions xui r Ci .

Implemented in the Minlog proof assistant.

(proof-to-extracted-term (current-proof))

The extracted program is correct by construction.

A proof of this fact can be automatically generated.

(proof-to-soundness-proof (current-proof))

1

http://minlog-system.de

Correct but slow?

Last week, Andy showed us an extracted SAT solver.

However, he said that it needed 37 minutes to decide if you can fit 6
pigeons in 5 holes (with n.c. quantifiers).

Extracted programs are terms in Minlog’s internal representation,
evaluated via NbE in Scheme.

Are slow programs the price we have to pay for verified correctness?

No! I will show you how to reduce Andy’s time to 0.340 s, without
changing the program.

The trick is to (automatically) translate the programs into Haskell,
which has excellent optimisation support.

2

Correct but slow?

Last week, Andy showed us an extracted SAT solver.

However, he said that it needed 37 minutes to decide if you can fit 6
pigeons in 5 holes (with n.c. quantifiers).

Extracted programs are terms in Minlog’s internal representation,
evaluated via NbE in Scheme.

Are slow programs the price we have to pay for verified correctness?

No! I will show you how to reduce Andy’s time to 0.340 s, without
changing the program.

The trick is to (automatically) translate the programs into Haskell,
which has excellent optimisation support.

2

Correct but slow?

Last week, Andy showed us an extracted SAT solver.

However, he said that it needed 37 minutes to decide if you can fit 6
pigeons in 5 holes (with n.c. quantifiers).

Extracted programs are terms in Minlog’s internal representation,
evaluated via NbE in Scheme.

Are slow programs the price we have to pay for verified correctness?

No! I will show you how to reduce Andy’s time to 0.340 s, without
changing the program.

The trick is to (automatically) translate the programs into Haskell,
which has excellent optimisation support.

2

Outline

1 Algebras and terms in Minlog

2 Translation into Haskell

3 Back to Andy’s SAT solver

3

Algebras and terms inMinlog

A common extension of Gödel’s T and PCF

Simply typed λ-calculus

minimal logic

+ Free algebras

(co)inductive predicates

+ Recursion and corecursion operators

induction and coinduction

+ General recursion with a measure µ

general induction via µ

+ Program constants

partial functionals (PCF)

4

A common extension of Gödel’s T and PCF

Simply typed λ-calculus minimal logic

+ Free algebras (co)inductive predicates

+ Recursion and corecursion operators induction and coinduction

+ General recursion with a measure µ general induction via µ

+ Program constants partial functionals (PCF)

4

Types

Simply typed language.

Base types and function types σ → τ .

Base types are free algebras.

Given by (finite) list of constructors (sum-of-products data types).

E.g. lists, binary trees:

Lα = µξ([]ξ, ::α→ξ→ξ)

BinTreeα = µξ(Leafα→ξ,Branchξ→ξ→ξ)

Require at least one constructor without inductive arguments – ensures
all algebras are inhabited.

Note the type variable α (polymorphism).

5

More on algebras

Algebras can be simultaneously defined, e.g. finitely branching trees

(Ts,T) = µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ)

Empty : Ts

Tcons : T→ Ts→ Ts

Leaf : T

Branch : Ts→ T

Also nested definitions are possible:

NT = µξ(Lfξ,BrLξ→ξ)

Realizers for simultaneous and nested predicates.

6

More on algebras

Algebras can be simultaneously defined, e.g. finitely branching trees

(Ts,T) = µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ)

Empty : Ts

Tcons : T→ Ts→ Ts

Leaf : T

Branch : Ts→ T

Also nested definitions are possible:

NT = µξ(Lfξ,BrLξ→ξ)

Realizers for simultaneous and nested predicates.

6

More on algebras

Algebras can be simultaneously defined, e.g. finitely branching trees

(Ts,T) = µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ)

Empty : Ts

Tcons : T→ Ts→ Ts

Leaf : T

Branch : Ts→ T

Also nested definitions are possible:

NT = µξ(Lfξ,BrLξ→ξ)

Realizers for simultaneous and nested predicates.

6

More on algebras

Algebras can be simultaneously defined, e.g. finitely branching trees

(Ts,T) = µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ)

Empty : Ts

Tcons : T→ Ts→ Ts

Leaf : T

Branch : Ts→ T

Also nested definitions are possible:

NT = µξ(Lfξ,BrLξ→ξ)

Realizers for simultaneous and nested predicates.

6

Recursion operators

RτLα : Lα → τ → (α→ Lα → τ → τ)→ τ

RτLα [] e f = e

RτLα (x ::xs) e f = f x xs (RτLα xs e f)

One for each algebra, parameterised over target type τ .

Realizer of structural induction.

Simultaneous algebras use simultaneous recursion operators.

Nested algebras such as NT use map operators, e.g.

Mσ→ρ
λαLα

: Lσ → (σ → ρ)→ Lρ

7

Corecursion and destructors

Dual of recursion and constructors.

No separate coalgebra – limit-colimit coincidence for domains.

E.g. destructor for NT (here U = µξ(uξ) is the unit type):

DNT : NT→ U + LNT

DNT Lf 7→ inl u, DNT (Br as) 7→ inr as.

Corecursion operator:

coRτNT : τ → (τ → U + LNT+τ)→ NT
coRτNTN M 7→ case (M N) of

inl u→ Lf

inr qs → Br (MNT+τ→NT
λαLα

qs [id, λx(coRxM)])

Realizer of coinduction.
8

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ : (τ → N)→ τ → (τ → (τ → σ)→ σ)→ σ
gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ :

measure︷ ︸︸ ︷
(τ → N)→ τ → (τ → (τ → σ)→ σ)→ σ

gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ : (τ → N)→
input︷︸︸︷
τ → (τ → (τ → σ)→ σ)→ σ

gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ : (τ → N)→ τ →
step function︷ ︸︸ ︷

(τ → (τ → σ)→ σ) → σ
gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ : (τ → N)→ τ → (τ →
rec. call︷ ︸︸ ︷

(τ → σ)→ σ)→ σ
gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

General recursion with a measure

General induction with measure µ : τ → N: If P(x) whenever P(y)
holds for all y with µ(y) < µ(x), then (∀x : τ)P(x).

Realized by general recursion – allowed to make recursive calls on
arguments smaller according to µ (ensures termination).

gRτσ : (τ → N)→ τ → (τ → (τ → σ)→ σ)→ σ
gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Here inhabσ is a canonical inhabitant of type σ – remember all
algebras (hence all types) are inhabited.

9

Program constants

The user can add their own constants – this is the PCF part.

Defined by pattern-matching – no requirement of exhaustive patterns
or recursive calls only on smaller arguments.

User is asked to prove totality, but this can be skipped.

Semantics using domains (in the form of Scott’s information
systems).

E.g. parity : N→ B

parity 0 = F
parity (Succ 0) = T
parity (Succ (Succ n)) = parity n

10

Translating intoHaskell

From proof to program

Proof

Minlog term

Haskell program

Machine code

proof-to-extracted-term

term-to-haskell-program

ghc -O2

computational/n. c. quantifiers etc

general compiler optimisations

11

From proof to program

Proof

Minlog term

Haskell program

Machine code

proof-to-extracted-term

term-to-haskell-program

ghc -O2

computational/n. c. quantifiers etc

general compiler optimisations

11

From proof to program

Proof

Minlog term

Haskell program

Machine code

proof-to-extracted-term

term-to-haskell-program

ghc -O2

computational/n. c. quantifiers etc

general compiler optimisations

11

Minlog types to Haskell types

Translation Minlog types → Haskell types straightforward.

Algebras mapped to data types. For “builtin” types:

Minlog type Haskell type
N, Z, P Integer

Q Rational

B Bool

Lα [α]
U ()

A + B Either A B

U + A Maybe A

A× B (A, B)

A→ B A -> B

Notable exception: R treated like any other algebra – no direct
Haskell equivalent (certainly not Float).

12

Other algebras

Other algebras translated – straightforward since given by
constructors in both Minlog and Haskell.

Haskell supports both mutual and nested data types.

Add deriving (Eq, Show, Read, Ord) for finitary algebras.

Need to make sure that data type and constructor names start with a
capital letter.

13

Generating a Haskell program

Given a list of terms ~t:

1 Recursively find all program constants, operators and their types
occurring in ~t.

2 Generate data type declarations, and functions for operators and
program constants.

3 Translate the terms in ~t themselves.

14

Translating terms

Mostly straightforward.

Translate variables to variables, lambda terms to lambda terms etc.

Minlog has already taken care of making variables non-clashing (via
α-conversion).

However, Minlog is fond of variable names such as

(integer=>(integer@boole)=>nat)_0

which are not valid Haskell names (and long!).

We make sure all illegal characters are removed.

Replace with shorter names, unless the name was chosen by the user.

15

Recursion operators

For recursion operators, we construct Minlog terms

ri := Rτσ (ci ~t) ~e

with fresh variables ~t and ~e for each constructor ci of σ.

We then normalize the Minlog terms in Minlog ; nt(ri).

Generate a Haskell function defined by

r0 = nt(r0)

. . .

rk = nt(rk)

Ensures that Haskell semantics coincide with Minlog semantics.

listRec : [a] -> b -> (a -> [a] -> b -> b) -> b

listRec [] e f = e

listRec (x : xs) e f = f x xs (listRec xs e f)

16

Corecursion operators

For corecursion, no distinction is made between different constructors.

Minlog has a function to expand a corecursion constant once (Scheme
and Minlog are strict languages).

nTCoRec : b -> Maybe [Either NT b] -> NT

ntCoRec n m =

case (m n) of

Nothing -> Lf

(Just w) -> Br (fmap (\ y -> (case y of

Left h -> h

Right e -> nTCoRec e m) w))

Map operators translated to fmap from Functor type class – can be
derived automatically by GHC using the DeriveFunctor flag.

17

Program constants

Program constants are basically Haskell pattern matching functions.

Complication: we translate natural numbers to integers, but cannot
pattern match on integers as natural numbers.

Solution: use Haskell’s guard conditions.

parity :: Integer {-Nat-} -> Bool

parity 0 = False

parity 1 = True

parity n | n > 1 = parity (n - 2)

Similar considerations for P and rational numbers.

18

General recursion with a measure

gRτσ : (τ → N)→ τ → (τ → (τ → σ)→ σ)→ σ
gRτσ µ x g = g x (λy (if µ(y) < µ(x) then gRτσ µ y g else inhabσ))

Two options: same behaviour as Minlog or taking advantage of
laziness.

Minlog evaluates the measure at each recursive call – expensive.

Stops non-terminating evaluation where the body is infinitely
expanded (Minlog and Scheme strict languages).

19

General recursion with a measure (cont.)

Translation offers to skip the check – gives another realizer that is
still sound. (Controlled by HASKELL-GREC-MEASURE-FLAG.)

gRec :: a -> (a -> (a -> b) -> b) -> b

gRec x g = g x (y -> gRec y g)

However, now the link to Minlog semantics is lost: gRτσ is always
total in Minlog, modified version not necessarily so in Haskell.

gRec 0 (\ y h -> h y)

= (\ y h -> h y) 0 (\ z -> gRec z (\ y h -> h y))

= (\ z -> gRec z (\ y h -> h y)) 0

= gRec 0 (\ y h -> h y)

= ...

(e.g. with identity measure µ : N→ N)

20

Canonical inhabitants

Previous slide used the canonical inhabitant inhabσ.

Also used to realize ex-falso-quodlibet ⊥ → A.

Was okay since all Minlog types are inhabited by total elements – not
true for Haskell!

Solution: introduce a type class

class Inhabited a where

inhab :: a

21

Canonical inhabitants (cont.)

class Inhabited a where

inhab :: a

Now we need to track inhabitedness constraints and add them to type
signatures.

Can be complicated with mutually recursive calls etc – fixed point
algorithm.

Also need to generate instances for concrete types τ that use inhabτ .

22

Back toAndy’s SAT solver

Extracting a DPLL solver

Andy gave me his Minlog development for the DPLL solver.

I extracted his program and wrote 30 lines of Haskell.

Get file name from command line, use a library to parse input in the
DIMACS format (15 lines).

Show instances for non-finitary data types (15 lines).

Using Haskell’s laziness, we can write a Show instance so that we only
calculate YES/NO (satisfiable), without a witness.

23

Benchmark

Formula Minlog Interpreted (ghci) Compiled (ghc -O2)
Witness Witness Yes/No Witness Yes/No

PHP(4,3) 15.32s 0.17s 0.12s 0.008s 0.004s

PHP(4,4) 6.87s 0.08s 0.07s 0.000s 0.000s

PHP(5,4) 219.78s 1.52s 1.08s 0.032s 0.020s

PHP(5,5) 33.15s 0.18s 0.19s 0.004s 0.004s

PHP(6,5) 2245.27s 16.68s 11.71s 0.340s 0.124s

PHP(6,6) 84.88s 0.54s 0.53s 0.012s 0.012s

24

Thanks!

term-to-haskell-program is
available in the SVN (“latest”)
version of Minlog.

	Introduction
	Algebras and terms in Minlog
	Types and algebras
	Recursion operators
	Corecursion and destructors
	General recursion with a measure
	Program constants

	Translating into Haskell
	Minlog types to Haskell types
	Translating terms
	Recursion and corecursion operators
	Program constants
	General recursion with a measure
	Canonical inhabitants

	Back to Andy's SAT solver

