The encode decode 'methodm HoTT
relat|onally




Relational reasoning ala
Burstall



Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B:U,b: B,f: A— B — B, define
o foldfb[]=b

o foldfb(a:: as) = fa(foldf bas)



Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B:U,b: B,f: A— B — B, define
o foldfb[]=b
o foldfb(a:: as) = fa(foldfbas)
Then for all A,B, b, f as above, and F : ListA— B — U,

; Fasr
° it £ 29 Flaas) (fan)




Burstall’s insight: fold-ing lists (1969)
Theorem Given A,B:U,b: B,f: A— B — B, define

o foldfb[]=b

o foldfb(a:: as) = fa(foldfbas)
Then for all A,B, b, f as above, and F : ListA— B — U,

; Fasr
° it £ 29 Flaas) (fan)

@ then for all as : List A, we have F as (fold f b as).

Proof Induction on as : List A.



Induction for functions

@ every f: X — Y gives rise to graph relation y = f x

@ recursive f may be simulated by an inductive F x y



Induction for functions
@ every f: X — Y gives rise to graph relation y = f x
@ recursive f may be simulated by an inductive F x y

» (partial correctness) soundness
sndq(F): (Nx: X)(Ny:Y)Fxy —(y="7x)

(typically: mechanical; proof by induction on F)



Induction for functions
@ every f: X — Y gives rise to graph relation y = f x
@ recursive f may be simulated by an inductive F x y
» (partial correctness) soundness
sndq(F): (Nx: X)(Ny:Y)Fxy —(y="7x)
(typically: mechanical; proof by induction on F)
> (totality) completeness
cmp,(F) : (Nx : X) Ny : V) (y = fx) = Fxy
alternatively, by appeal to J
cmps(F) : (Mx : X) Fx(fx)

(typically: not mechanical; proof by induction on the data x)



Abstraction principle

@ in proof (elimination): replace induction on lists with induction on
graph; definitional equalities encapsulated in instantiation of
inductive premises;

@ in specification (introduction/definition): reduce fold induction to
datatype induction; definitional equalities justify constructors
(axioms, inference rules) of graph.

cf.

@ Bove-Capretta (1999): termination of non-structural recursion via

domain predicates

@ Bertot-Magaud (2000): Changement de représentation des
données

@ McBride-McKinna (2004): The View from the Left



Implemented instances
== . .
o ACL2ZNQTHM/ACLZ2: Boyer-Moore "recursion analysis".

o I HoL: TFP (Slind); Krauss et al..

° ¥ CoQ: Function (Forest et al.), Program, Equations
(Sozeau); esp. for non-structural recursion.

@ EPIGRAM: native support for views (soundness built in);
have to write programs witnessing views (proofs of completeness)
by hand.

@ AGDA, \“? IDRIS: (so far) need to proceed entirely by hand.

Idea: extend the technique to implementations of HoTT.



- e
- ! o
s g »
= -
- = -
= -~ o '_f‘-‘: - -



Synthetic homotopy theory via Type Theory

@ New interpretation of Martin-L6f Type Theory into (abstract)
homotopy theory.

@ Intuitively: ’
y D
» Types ~» spaces. “

» a: A~ points of A. /\

» |dentity type a =4 b ~ space of paths from ato bin A.
@ Univalence Axiom: equality of types is homotopy equivalence.

@ Logical methods capture homotopical concepts; synthetic
homotopy theory.

@ Getting closer to a well-behaved implementation (CUBICALTT,
Coquand et al.).



Higher inductive types

@ Other logical ideas are also suggested by the homotopy
interpretation.

@ Higher inductive types: generated by both point and (higher) path
constructors.

@ E.g. circle S' generated by

base : S
loop : base = base



Higher inductive types

@ Other logical ideas are also suggested by the homotopy
interpretation.

@ Higher inductive types: generated by both point and (higher) path
constructors.

@ E.g. circle S' generated by

base : S
loop : base = base

base



Higher inductive types

@ Other logical ideas are also suggested by the homotopy
interpretation.

@ Higher inductive types: generated by both point and (higher) path
constructors.
loop

@ E.g. circle S' generated by

base : S
loop : base = base

base



Higher inductive types

@ Other logical ideas are also suggested by the homotopy
interpretation.

@ Higher inductive types: generated by both point and (higher) path

constructors.
loop
@ E.g. circle S' generated by
base : S'
loop : base = base
@ Eliminator must respect/act on higher constructors.
base

@ Proofs are more subtle; blind approach not very useful.



Proving homotopy equivalences
Proving
f-A~B:g

becomes: construct inhabitants of

(NMb:B) f(gb)=b

(Ma:A)g(fa)=a



Actual use case: the encode-decode method

ex : P(x) ~ C(x) : dy
where:
@ x: TforHITT,
@ P(x) = path space, defined in terms of equality,

@ C(x) = covering space, defined by HIT-recursion and the
univalence axiom.



Example for showing m1(S') ~ Z
Here:
o T=¢'

@ P(x) =base = x

@ C(x) given by
» C(base)=7Z
» C(loop) : C(base) = C(base) = ua(succ)
» i.e. loop;z = succ z.



Example for showing m1(S') ~ Z
Here:
e T=S¢'

@ P(x) =base = x

@ C(x) given by
» C(base)=7Z
» C(loop) : C(base) = C(base) = ua(succ)
» i.e. loop;z = succ z.

o for p: P(x), exp = p;0.



Example for showing m1(S') ~ Z
Here:
e T=S¢'

@ P(x) =base = x

@ C(x) given by
» C(base)=7Z
» C(loop) : C(base) = C(base) = ua(succ)
» i.e. loop;z = succ z.

o for p: P(x), exp = p;0.

e for ¢ : C(x), dxc given by
» dpase = Z — loop”
> dIoop : |oop*(dbase) = Opase
» given by a translation-invariance lemma.



Example for showing m1(S') ~ Z
Here:
e T=S¢'

@ P(x) =base = x

@ C(x) given by
» C(base)=7Z
» C(loop) : C(base) = C(base) = ua(succ)
> i.e.loopsz = succ z.

o for p: P(x), exp = p;0.

e for ¢ : C(x), dxc given by
» dpase = Z — loop”
> dIoop : |oop*(dbase) = Opase
» given by a translation-invariance lemma.

@ Prove e, = dy ' (tricky!) and conclude:

Q(S', base) := (base = base) = P(base) ~ C(base) = Z



Proving e, = d, ' in terms of graphs
Introduce graphs, for x : S

Ex: P(x) = C(x) = U
Dy : C(x) = P(x) = U

with, for all x : S!

snde, (Ex) : (Mp: P(x)) (Mc: C(x)) Expc — (¢ = exp)

cmp,, (Ex) : (Np: P(x)) (Mc: C(x)) (¢ =exp) — Expc

sndg, (Dx) : (Mc: C(x)) (Np: P(x)) Dxcp — (p= dxC)

cmpy, (Dx) : (Me: C(x)) (Mp: P(x)) (p=0dxc) = Dxcp
Finally, prove



The encode-decode equivalence

The equivalence ey : P(x) ~ C(x) : dx now follows:

Exp(ex(p)) by cmpe, (Ex)



The encode-decode equivalence

The equivalence ey : P(x) ~ C(x) : dx now follows:

Exp(ex(p)) by cmpe, (Ex)
Dx(ex(p)) p by (1)



The encode-decode equivalence

The equivalence ey : P(x) ~ C(x) : dx now follows:

Exp(ex(p)) by cmpe, (Ex)
Dx(ex(p)) p by (1)
dx(ex(p)) =p by sndg,(Dx)



The encode-decode equivalence

The equivalence ey : P(x) ~ C(x) : dx now follows:
p(ex(p)) by cmpe,(Ex)

Dx(ex( ) p by (1)
dx(ex(p)) = p by sndg,(Dx)

The other direction is entirely symmetric.
Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.



Logical equivalence vs homotopy equivalence
@ By soundness and completeness, we get a logical equivalence
Fxy<s(y=fx)
@ Can this be improved to a homotopy equivalence

Fxy~(y=fx)?



Logical equivalence vs homotopy equivalence
@ By soundness and completeness, we get a logical equivalence
Fxy< (y="7x)
@ Can this be improved to a homotopy equivalence
Fxy~(y=fx)?
@ Yes, if snd and cmp are coherent in a suitable way:
coh¢(F) : transportg,(snd p)(p) = cmp x
(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardd).

@ Can usually be proven for the inductively defined graph.



Logical equivalence vs homotopy equivalence
@ By soundness and completeness, we get a logical equivalence
Fxy< (y="7x)
@ Can this be improved to a homotopy equivalence
Fxy~(y=fx)?
@ Yes, if snd and cmp are coherent in a suitable way:
coh¢(F) : transportg,(snd p)(p) = cmp x
(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardd).

@ Can usually be proven for the inductively defined graph.

@ However...



this is not what we are doing!



|dea: how to prove (1) (cf. Bertot/Magaud)

@ (t) is an equivalence of specifications

@ Fxy~(y=fx)isone way to proceed, not the only one!

@ for suitable choices of D, E, (1) becomes easy or even vacuous to
prove

» (easy) by (higher) induction on D, E; not necessarily a homotopy
equivalence

» (vacuous)take Dypc=Eycp ()

@ Difficulty moves into proofs of completeness.



Choices and tradeoffs

inductive E inductive E inductive E

inductive D Dcp=Epc HITD
snde, (Ex)
cmp,. (Ex) mechanical mechanical mechanical
cohg, (Ex)
sndq, (Dx) easy induction

mechanical

cmpg, (Dx) [ impossible? | induction + Z is a set
(1)D < E | easy induction vacuous hard




7 is a set!

@ Because Z has decidable equality, it has trivial higher structure by
Hedberg’s Theorem.

(]

Forall p,q: x =z y, we have p = q.

(]

In the terminology of HOTT, Z is a set.

(]

By soundness, coherence and the univalence axiom,
Epase P C = (€x(p) =z ©).

(]

Hence also Epage p C s trivial.

(*]

In particular loop*e = e for all e : Epase pC.

(]

This makes HIT-induction respecting paths vacous!



Completeness because Z is a set

@ For Dycp = Expc, we need

cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢



Completeness because Z is a set

@ For Dycp = Expc, we need
cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢

@ which by HIT-induction on S', and the above observation reduces
to
(Mc : C(base)) Epase (doaseC) €



Completeness because Z is a set

@ For Dycp = Expc, we need
cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢

@ which by HIT-induction on S', and the above observation reduces
to
(Nz: Z) Epase (dbaseZ) 2



Completeness because Z is a set

@ For Dycp = Expc, we need
cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢

@ which by HIT-induction on S', and the above observation reduces
to
(Nz : Z) Epase (loop?) z



Completeness because Z is a set

@ For Dycp = Expc, we need
cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢

@ which by HIT-induction on S', and the above observation reduces
to
(Nz : Z) Epase (loop?) z

@ by completeness for E, this reduces to
(Nz:7Z) (loop?)*0 = z

which is easily proven by (normal) induction on z : Z.



Completeness because Z is a set

@ For Dycp = Expc, we need
cmpp, (dx) : (Mx : S") (Me: C(x)) Ex (dxc) ¢

@ which by HIT-induction on S', and the above observation reduces
to
(Nz : Z) Epase (loop?) z

@ by completeness for E, this reduces to
(Nz:7Z) (loop?)*0 = z

which is easily proven by (normal) induction on z : Z.

@ No (non-trivial) HIT-induction needed to prove 7(S') ~ Z!






Summary

@ Burstall’'s insight: replace proofs relying on reduction behaviour of
functions by proofs by induction over the graph of the function.

@ By choosing a clever encoding of the graph, we can get away with
less work.

@ Work in progress: hopefully scales to more complicated
encode-decode proofs.



Summary

@ Burs] |
funct]

@ By cf
less

@ WorkK
enco

Thanks!

our of
bN.

hy with




