
The encode-decode method in HoTT,
relationally

Fredrik Nordvall Forsberg
joint work with James McKinna

MSP group, Strathclyde

STP @ Dundee, 7 October 2015

Relational reasoning à la
Burstall

Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B : U ,b : B, f : A→ B → B, define

fold f b [] = b

fold f b (a :: as) = f a (fold f b as)

Then for all A,B,b, f as above, and F : List A→ B → U ,

if F [] b and F as r
F (a :: as) (f a r)

,

then for all as : List A, we have F as (fold f b as).

Proof Induction on as : List A.

2

Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B : U ,b : B, f : A→ B → B, define

fold f b [] = b

fold f b (a :: as) = f a (fold f b as)

Then for all A,B,b, f as above, and F : List A→ B → U ,

if F [] b and F as r
F (a :: as) (f a r)

,

then for all as : List A, we have F as (fold f b as).

Proof Induction on as : List A.

2

Burstall’s insight: fold-ing lists (1969)

Theorem Given A,B : U ,b : B, f : A→ B → B, define

fold f b [] = b

fold f b (a :: as) = f a (fold f b as)

Then for all A,B,b, f as above, and F : List A→ B → U ,

if F [] b and F as r
F (a :: as) (f a r)

,

then for all as : List A, we have F as (fold f b as).

Proof Induction on as : List A.

2

Induction for functions

every f : X → Y gives rise to graph relation y = f x

recursive f may be simulated by an inductive F x y

I (partial correctness) soundness

sndf (F) : (Πx : X) (Πy : Y) F x y → (y = f x)

(typically: mechanical; proof by induction on F)

I (totality) completeness

cmpf (F) : (Πx : X) (Πy : Y) (y = f x)→ F x y

alternatively, by appeal to J

cmpf (F) : (Πx : X) F x (f x)

(typically: not mechanical; proof by induction on the data x)

3

Induction for functions

every f : X → Y gives rise to graph relation y = f x

recursive f may be simulated by an inductive F x y

I (partial correctness) soundness

sndf (F) : (Πx : X) (Πy : Y) F x y → (y = f x)

(typically: mechanical; proof by induction on F)

I (totality) completeness

cmpf (F) : (Πx : X) (Πy : Y) (y = f x)→ F x y

alternatively, by appeal to J

cmpf (F) : (Πx : X) F x (f x)

(typically: not mechanical; proof by induction on the data x)

3

Induction for functions

every f : X → Y gives rise to graph relation y = f x

recursive f may be simulated by an inductive F x y

I (partial correctness) soundness

sndf (F) : (Πx : X) (Πy : Y) F x y → (y = f x)

(typically: mechanical; proof by induction on F)

I (totality) completeness

cmpf (F) : (Πx : X) (Πy : Y) (y = f x)→ F x y

alternatively, by appeal to J

cmpf (F) : (Πx : X) F x (f x)

(typically: not mechanical; proof by induction on the data x)

3

Abstraction principle

in proof (elimination): replace induction on lists with induction on
graph; definitional equalities encapsulated in instantiation of
inductive premises;

in specification (introduction/definition): reduce fold induction to
datatype induction; definitional equalities justify constructors
(axioms, inference rules) of graph.

cf.
Bove-Capretta (1999): termination of non-structural recursion via
domain predicates
Bertot-Magaud (2000): Changement de représentation des
données
McBride-McKinna (2004): The View from the Left

4

Implemented instances

NQTHM/ACL2: Boyer-Moore "recursion analysis".

HOL: TFP (Slind); Krauss et al..

COQ: Function (Forest et al.), Program, Equations
(Sozeau); esp. for non-structural recursion.

EPIGRAM: native support for views (soundness built in);
have to write programs witnessing views (proofs of completeness)
by hand.

AGDA, IDRIS: (so far) need to proceed entirely by hand.

Idea: extend the technique to implementations of HoTT.

5

Homotopy Type Theory

Synthetic homotopy theory via Type Theory
New interpretation of Martin-Löf Type Theory into (abstract)
homotopy theory.

Intuitively:

I Types spaces.

I a : A points of A.

I Identity type a =A b space of paths from a to b in A.

Univalence Axiom: equality of types is homotopy equivalence.

Logical methods capture homotopical concepts; synthetic
homotopy theory.

Getting closer to a well-behaved implementation (CUBICALTT,
Coquand et al.).

6

Higher inductive types

Other logical ideas are also suggested by the homotopy
interpretation.

Higher inductive types: generated by both point and (higher) path
constructors.

E.g. circle S1 generated by

base : S1

loop : base = base

base

loop

Eliminator must respect/act on higher constructors.

Proofs are more subtle; blind approach not very useful.

7

Higher inductive types

Other logical ideas are also suggested by the homotopy
interpretation.

Higher inductive types: generated by both point and (higher) path
constructors.

E.g. circle S1 generated by

base : S1

loop : base = base

base

loop

Eliminator must respect/act on higher constructors.

Proofs are more subtle; blind approach not very useful.

7

Higher inductive types

Other logical ideas are also suggested by the homotopy
interpretation.

Higher inductive types: generated by both point and (higher) path
constructors.

E.g. circle S1 generated by

base : S1

loop : base = base

base

loop

Eliminator must respect/act on higher constructors.

Proofs are more subtle; blind approach not very useful.

7

Higher inductive types

Other logical ideas are also suggested by the homotopy
interpretation.

Higher inductive types: generated by both point and (higher) path
constructors.

E.g. circle S1 generated by

base : S1

loop : base = base

base

loop

Eliminator must respect/act on higher constructors.

Proofs are more subtle; blind approach not very useful.

7

Proving homotopy equivalences

Proving

f : A ' B : g

becomes: construct inhabitants of

(Πb : B) f (g b) = b

(Πa : A) g (f a) = a

8

Actual use case: the encode-decode method

ex : P(x) ' C(x) : dx

where:

x : T for HIT T ,

P(x) ≡ path space, defined in terms of equality,

C(x) ≡ covering space, defined by HIT-recursion and the
univalence axiom.

9

Example for showing π1(S1) ' Z

S1

Here:
T ≡ S1

P(x) ≡ base = x

C(x) given by
I C(base) ≡ Z
I C(loop) : C(base) = C(base) ≡ ua(succ)
I i.e. loop?

Cz ≡ succ z.

for p : P(x), exp ≡ p?
C0.

for c : C(x), dxc given by
I dbase ≡ z 7→ loopz

I dloop : loop?(dbase) = dbase
I given by a translation-invariance lemma.

Prove ex = d−1
x (tricky!) and conclude:

Ω(S1,base) :≡ (base = base) ≡ P(base) ' C(base) ≡ Z

10

Example for showing π1(S1) ' Z

S1

Here:
T ≡ S1

P(x) ≡ base = x

C(x) given by
I C(base) ≡ Z
I C(loop) : C(base) = C(base) ≡ ua(succ)
I i.e. loop?

Cz ≡ succ z.

for p : P(x), exp ≡ p?
C0.

for c : C(x), dxc given by
I dbase ≡ z 7→ loopz

I dloop : loop?(dbase) = dbase
I given by a translation-invariance lemma.

Prove ex = d−1
x (tricky!) and conclude:

Ω(S1,base) :≡ (base = base) ≡ P(base) ' C(base) ≡ Z

10

Example for showing π1(S1) ' Z

S1

Here:
T ≡ S1

P(x) ≡ base = x

C(x) given by
I C(base) ≡ Z
I C(loop) : C(base) = C(base) ≡ ua(succ)
I i.e. loop?

Cz ≡ succ z.

for p : P(x), exp ≡ p?
C0.

for c : C(x), dxc given by
I dbase ≡ z 7→ loopz

I dloop : loop?(dbase) = dbase
I given by a translation-invariance lemma.

Prove ex = d−1
x (tricky!) and conclude:

Ω(S1,base) :≡ (base = base) ≡ P(base) ' C(base) ≡ Z

10

Example for showing π1(S1) ' Z

S1

Here:
T ≡ S1

P(x) ≡ base = x

C(x) given by
I C(base) ≡ Z
I C(loop) : C(base) = C(base) ≡ ua(succ)
I i.e. loop?

Cz ≡ succ z.

for p : P(x), exp ≡ p?
C0.

for c : C(x), dxc given by
I dbase ≡ z 7→ loopz

I dloop : loop?(dbase) = dbase
I given by a translation-invariance lemma.

Prove ex = d−1
x (tricky!) and conclude:

Ω(S1,base) :≡ (base = base) ≡ P(base) ' C(base) ≡ Z

10

Proving ex = d−1
x in terms of graphs

Introduce graphs, for x : S1

Ex : P(x)→ C(x)→ U
Dx : C(x)→ P(x)→ U

with, for all x : S1

sndex (Ex) : (Πp : P(x)) (Πc : C(x)) Ex p c → (c = ex p)

cmpex
(Ex) : (Πp : P(x)) (Πc : C(x)) (c = ex p)→ Ex p c

snddx (Dx) : (Πc : C(x)) (Πp : P(x)) Dx c p → (p = dx c)

cmpdx
(Dx) : (Πc : C(x)) (Πp : P(x)) (p = dx c)→ Dx c p

Finally, prove

(†) (Πx : S1) (Πp : P(x)) (Πc : C(x)) Ex p c ⇔ Dx c p

11

The encode-decode equivalence

The equivalence ex : P(x) ' C(x) : dx now follows:

Ex p (ex (p)) by cmpex
(Ex)

Dx (ex (p)) p by (†)
dx (ex (p)) = p by snddx (Dx)

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.

12

The encode-decode equivalence

The equivalence ex : P(x) ' C(x) : dx now follows:

Ex p (ex (p)) by cmpex
(Ex)

Dx (ex (p)) p by (†)

dx (ex (p)) = p by snddx (Dx)

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.

12

The encode-decode equivalence

The equivalence ex : P(x) ' C(x) : dx now follows:

Ex p (ex (p)) by cmpex
(Ex)

Dx (ex (p)) p by (†)
dx (ex (p)) = p by snddx (Dx)

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.

12

The encode-decode equivalence

The equivalence ex : P(x) ' C(x) : dx now follows:

Ex p (ex (p)) by cmpex
(Ex)

Dx (ex (p)) p by (†)
dx (ex (p)) = p by snddx (Dx)

The other direction is entirely symmetric.

Note No explicit equational reasoning!

Also Note Each step is logical equivalence, homotopy equivalences
not needed for argument.

12

Logical equivalence vs homotopy equivalence

By soundness and completeness, we get a logical equivalence

F x y ⇔ (y = f x)

Can this be improved to a homotopy equivalence

F x y ' (y = f x)?

Yes, if snd and cmp are coherent in a suitable way:

cohf (F) : transportFx (snd p)(p) = cmp x

(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardó).

Can usually be proven for the inductively defined graph.

However. . .

13

Logical equivalence vs homotopy equivalence

By soundness and completeness, we get a logical equivalence

F x y ⇔ (y = f x)

Can this be improved to a homotopy equivalence

F x y ' (y = f x)?

Yes, if snd and cmp are coherent in a suitable way:

cohf (F) : transportFx (snd p)(p) = cmp x

(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardó).

Can usually be proven for the inductively defined graph.

However. . .

13

Logical equivalence vs homotopy equivalence

By soundness and completeness, we get a logical equivalence

F x y ⇔ (y = f x)

Can this be improved to a homotopy equivalence

F x y ' (y = f x)?

Yes, if snd and cmp are coherent in a suitable way:

cohf (F) : transportFx (snd p)(p) = cmp x

(cf. HoTT Book Issue #718 [for f = id], Rijke/Escardó).

Can usually be proven for the inductively defined graph.

However. . .

13

this is not what we are doing!

Idea: how to prove (†) (cf. Bertot/Magaud)

(†) is an equivalence of specifications

F x y ' (y = f x) is one way to proceed, not the only one!

for suitable choices of D,E , (†) becomes easy or even vacuous to
prove

I (easy) by (higher) induction on D,E ; not necessarily a homotopy
equivalence

I (vacuous) take Dx p c ≡ Ex c p (!)

Difficulty moves into proofs of completeness.

14

Choices and tradeoffs

inductive E
inductive D

inductive E
D c p ≡ E p c

inductive E
HIT D

sndex (Ex)

cmpex
(Ex)

cohex (Ex)

mechanical mechanical mechanical

snddx (Dx) easy induction

cmpdx
(Dx) impossible? induction + Z is a set

mechanical

(†)D ⇔ E easy induction vacuous hard

15

Z is a set!

Because Z has decidable equality, it has trivial higher structure by
Hedberg’s Theorem.

For all p,q : x =Z y , we have p = q.

In the terminology of HoTT, Z is a set.

By soundness, coherence and the univalence axiom,
Ebase p c = (ex (p) =Z c).

Hence also Ebase p c is trivial.

In particular loop?e = e for all e : Ebase p c.

This makes HIT-induction respecting paths vacous!

16

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Π) Ebase (dbase)

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Πc : C(base)) Ebase (dbasec) c

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Πz : Z) Ebase (dbasez) z

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Πz : Z) Ebase (loopz) z

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Πz : Z) Ebase (loopz) z

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Completeness because Z is a set

For Dx c p ≡ Ex p c, we need

cmpDx
(dx) : (Πx : S1) (Πc : C(x)) Ex (dxc) c

which by HIT-induction on S1, and the above observation reduces
to

(Πz : Z) Ebase (loopz) z

by completeness for E , this reduces to

(Πz : Z) (loopz)
?0 = z

which is easily proven by (normal) induction on z : Z.

No (non-trivial) HIT-induction needed to prove π1(S1) ' Z!

17

Summary

Summary

Burstall’s insight: replace proofs relying on reduction behaviour of
functions by proofs by induction over the graph of the function.

By choosing a clever encoding of the graph, we can get away with
less work.

Work in progress: hopefully scales to more complicated
encode-decode proofs.

18

Summary

Burstall’s insight: replace proofs relying on reduction behaviour of
functions by proofs by induction over the graph of the function.

By choosing a clever encoding of the graph, we can get away with
less work.

Work in progress: hopefully scales to more complicated
encode-decode proofs.

Thanks!

18

