
Inductive-inductive definitions

Fredrik Nordvall Forsberg

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Doctor of Philosophy

Department of Computer Science
Swansea University

2014 (submitted November 2013)

Declaration
This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

Signed .. (candidate)

Date ..

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed .. (candidate)

Date ..

Abstract

The principle of inductive-inductive definitions is a principle for defining data types
in Martin-Löf Type Theory. It allows the definition of a set A, simultaneously defined
with a family B ∶ A → Set indexed over A. Such forms of definitions have been used
by several authors in order to for example define the syntax of Type Theory in Type
Theory itself. This thesis gives a theoretical justification for their use.

We start by giving a finite axiomatisation of a type theory with inductive-inductive
definitions in the style of Dybjer and Setzer’s axiomatisation of inductive-recursive def-
initions. We then give a categorical characterisation of inductive-inductive definitions
as initial objects in a certain category. This is presented using a general framework for
elimination rules based on the concept of a Category with Families. To show consistency
of inductive-inductive definitions, a set-theoretical model is constructed. Furthermore,
we give a translation of our theory with a simplified form of the elimination rule into
the already existing theory of indexed inductive definitions. This translation does not
seem possible for the general elimination rule. Extensions to the theory are investigated,
such as a combined theory of inductive-inductive-recursive definitions, more general
forms of indexing and arbitrarily high (finite) towers of inductive-inductive definitions.
Even so, not all uses of inductive-inductive definitions in the literature (in particular
the syntax of Type Theory) are covered by the theories presented. Finally, two larger,
novel case studies of the use of inductive-inductive definitions are presented: Conway’s
Surreal numbers and a formalisation of positive inductive-recursive definitions.

v

Table of Contents

Abstract v

Table of Contents vii

Acknowledgements xi

1 Introduction 1
1.1 The importance of dependent types . 1

1.1.1 Data types for computer science . 1
1.1.2 Data types for the working mathematician 3

1.2 Inductive definitions in Type Theory and set theory 4
1.2.1 Inductive definitions in Type Theory 4
1.2.2 Inductive definitions in set theory 8

1.3 Overview . 10

2 Martin-Löf Type Theory 13
2.1 An intuitionistic theory of types . 13

2.1.1 General equality and substitution rules 15
2.1.2 Set and function types . 16
2.1.3 Sets as type constants . 18
2.1.4 Derived rules and meta-theoretical properties 20
2.1.5 The Curry-Howard isomorphism: propositions-as-types 22
2.1.6 Equality and identity types . 24
2.1.7 Propositional types . 27

2.2 The dependently typed programming language and proof assistant Agda 28
2.3 Category theory in Type Theory . 30

3 A finite axiomatisation of inductive-inductive definitions 31
3.1 Examples of inductive-inductive definitions 31
3.2 A finite axiomatisation . 35

vii

3.2.1 Dissecting an inductive-inductive definition 35
3.2.2 Dybjer and Setzer’s axiomatisation of inductive-recursive defini-

tions . 35
3.2.3 The axiomatisation of inductive-inductive definitions 39
3.2.4 The examples revisited . 49
3.2.5 Elimination rules . 51

3.3 Summary and discussion . 57

4 A categorical characterisation 59
4.1 Inductive-inductive definitions as dialgebras 59

4.1.1 Dialgebras . 60
4.1.2 A category for inductive-inductive definitions 62

4.2 A framework for generic elimination rules 65
4.2.1 Categories with Families . 66
4.2.2 A generic induction hypothesis type 68
4.2.3 Generic computation rules . 77
4.2.4 The generic eliminator for an inductive-inductive definition . . . 79

4.3 The equivalence between having an eliminator and being initial 83
4.3.1 Initiality implies the elimination rules 84
4.3.2 The elimination rules imply initiality 84

4.4 Summary and discussion . 86

5 Semantics 89
5.1 A set-theoretic model . 89

5.1.1 Dialgebras versus F -algebras . 90
5.1.2 A concrete model . 92

5.2 Container semantics: an extensional normal form 97
5.2.1 Commuting codes . 98
5.2.2 Inductive-inductive containers . 102
5.2.3 Graded inductive-inductive containers 105

5.3 Reduction to extensional indexed inductive definitions 110
5.4 Summary and discussion . 117

6 Extensions 119
6.1 Inductive-inductive-recursive definitions 120

6.1.1 The axiomatisation of inductive-inductive-recursive definitions 121
6.1.2 Embedding inductive-recursive and inductive-inductive definitions129
6.1.3 Extending the model . 131

6.2 Telescopic inductive definitions and generalised families 136
6.2.1 Generalised families . 137
6.2.2 Towers of inductive-inductive definitions 138

6.3 Summary . 144

7 Case studies 147

7.1 Conway’s surreal numbers . 147
7.1.1 Introduction . 147
7.1.2 Surreal numbers, informally . 148
7.1.3 Set theory in Type Theory . 151
7.1.4 Surreal numbers as an inductive-inductive definition 152
7.1.5 Properties and operations . 156
7.1.6 Discussion . 159

7.2 Positive inductive-recursive definitions . 160
7.2.1 The semantics of IR, revisited . 161
7.2.2 Syntax and semantics of positive inductive-recursive definitions 163
7.2.3 Comparison to plain IR . 167
7.2.4 Existence of initial algebras . 168
7.2.5 Conclusion . 169

8 Conclusions 171
8.1 Summary and discussion . 171
8.2 Further work . 172

A Agda formalisations 175
A.1 Examples . 175

A.1.1 Contexts and types and terms . 175
A.1.2 Sorted lists . 176
A.1.3 Dense completion of an ordered set 180

A.2 Axiomatisations . 181
A.2.1 Prelude . 181
A.2.2 Inductive-inductive definitions . 182
A.2.3 Inductive-recursive definitions . 190
A.2.4 Inductive-inductive-recursive definitions 191

Bibliography 203

Index 213

Acknowledgements

I would like to thank my supervisor Anton Setzer: for everything I have learnt during
my PhD, for always encouraging me, and for suggesting the topic of this thesis. Many
thanks also to my other coauthors: Thorsten Altenkirch, Peter Morris, Neil Ghani,
Lorenzo Malatesta, Helmut Schwichtenberg and Kenji Miyamoto. I have enjoyed
working with all of you.

I would like to thank my examiners Peter Dybjer and John Tucker for their detailed
feedback on this dissertation, as well as interesting discussions, and not only during
the viva. This thesis has further benefited from discussions with Andreas Abel, Stevan
Andjelkovic, Ulrich Berger, Nils Anders Danielsson, Clement Fumex, Marcelo Fiore,
Peter Hancock, Paul Levy, Conor McBride, and Monika Seisenberger, and of course my
collaborators listed above.

Pierre-Evariste Dagand, Liam O’Reilly, Daniel Ritter and Angharad Williams proof
read parts of this thesis, for which I am grateful.

I would further like to thank all current and former members of the Theoretical
Computer Science group at Swansea University for such a stimulating working environ-
ment. In the department in general, I am especially thankful to Matt Gwynne, Phil and
Emma James, Liam O’Reilly, Tom Owen and Jen Pearson for making me feel welcome
in Wales. I am equally grateful to Helmut Schwichtenberg and the Logic group at LMU
Munich for hosting me there for five months.

I have received support from the Engineering and Physical Sciences Research Coun-
cil through grant EP/G033374/1, Theory And Applications of Induction Recursion, as well
as from the European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement nº 238381.

xi

Chapter1

Introduction

Contents
1.1 The importance of dependent types . 1
1.2 Inductive definitions in Type Theory and set theory 4
1.3 Overview . 10

This thesis describes a novel class of data types in the context of Martin-Löf Type theory.
We argue that expressive data types are important, both from a foundational point of
view (using Type Theory as a foundation for constructive mathematics) and for the
programmer that wishes to write programs that are correct by construction.

This chapter provides an introduction to the main body of the thesis. We first
emphasise the importance of expressive data types. We then review the history of
inductive definitions – both inside and outside of Type Theory – before giving an
overview of the rest of the thesis and the publications it is based upon.

1.1 The importance of dependent types

We start by motivating the use of dependent types for programming and mathematics.

1.1.1 Data types for computer science

Software is becoming increasingly important and widespread in modern society. It
is also becoming increasingly complex. At the same time, with computer programs
appearing in more and more everyday and safety-critical devices, the cost of failure is
increasing as well. How can we effectively develop programs, and be sure that they are
correct?

One option for the programmer is to tell the computer more of their intentions,
so that it can help spot errors or even derive trivial parts of programs. The question
then becomes how we can tell the computer what we want. There are of course many

1

1. Introduction

options, for example formal specifications, exhaustive testing frameworks or refinement
development, to name a few.

This thesis pursues another solution, which begins with a simple observation: even
the earliest programming languages such as FORTRAN [IBM Applied Science Division,
1954] and ALGOL [Perlis and Samelson, 1958] had a facility for the programmer to
tell the compiler some of her intentions – a type system1. For example, consider the
following simple Haskell [Marlow, 2010] program snippet:

f : Integer → Integer

f x = True

The programmer is telling the compiler that she intends to write a function f which
takes an integer x as input and returns an integer. However, both the compiler and
the reader can easily spot the error the programmer has made: she is not returning an
integer after all, but is trying to return the Boolean True! Luckily, a Haskell compiler
would be clever enough to inform our programmer of her mistake.

But now consider the following program:

sort : List Integer → List Integer

sort xs = [2, 0, 3]

This time, the compiler does not complain. The reader, however, should! It is not
such a wild guess that the programmer intended for this function to return a sorted
permutation of its input. This is exactly the kind of information we would like to pass
on to the compiler. As it stands, though, the input is irrelevant and the output is not
even sorted. If we want the compiler to alert us to this fact, we should make the type
system more expressive. Martin-Löf Type Theory [Martin-Löf, 1972, 1984; Nordström
et al., 1990, 2001] is a programming language with such an expressive type system. Even
though intended as a foundational system for constructive mathematics, Martin-Löf
[1982] has also stressed the connection to programming. The result is very expressive.
By exploiting the Curry-Howard isomorphism (see Section 2.1.5), we can encode any
specification written as a first-order formula in the type system.

First-order logic in itself is not enough. Without meaningful atomic propositions,
we cannot specify many properties. By the Curry-Howard isomorphism again, atomic
propositions correspond to ground types in Type Theory2. Thus, it is important to
extend Type Theory with a large collection of basic data types as well. By the dual logical
and mathematical nature of Type Theory, these will be used both for computation and
for reasoning.

We will review current systems of data types for Type Theory in Section 1.2. This
thesis studies a class of data types, called inductive-inductive definitions for reasons that

1Of course, these early type systems were not introduced for this purpose, but were rather meant for
the programmer to help the compiler, not the other way around (different data types require different
memory layouts). Likewise, type theory does not begin with FORTRAN, but rather with Russel [1903,
Appendix B].

2From now on, we will simply write Type Theory for Martin-Löf Type Theory.

2

1.1. The importance of dependent types

will become clear below, which generalises most of the data types previously considered.
With inductive-inductive definitions, we can give sort the type

sort : List Integer → SortedList (Integer, ≤)

which would rule out the implementation above – the list [2,0,3] is not sorted. See
Example 3.2 for the inductive-inductive definition of a data type of sorted lists.

We could also consider to go further. The type given to sort above does not guarantee
the correctness of the function; a possible function of that type would for instance be

wrong-sort : List Integer → SortedList (Integer, ≤)
wrong-sort xs = []

since the empty list [] certainly is sorted. To be sure that we have a correct program, we
could give sort the dependent3 type

sort : (xs : List Integer) → (Σ ys : SortedList (Integer, ≤)) (Permutation xs ys)

where Permutation xs ys is a data type consisting of proofs that xs is a permutation of
ys. Such a data type can also be defined using inductive-inductive definitions (in fact,
indexed inductive definitions, see Appendix A.1.2).

It is important to point out that types are not only there to tell us about our mistakes
after we have made them. Instead, types can also guide us towards the program we
would like to write, or even help the compiler to automatically derive parts of the
program for us. For this, dependent types are crucial; if we ask for a list, any list, we
might be disappointed by the result – most lists are not sorted! However, if we ask for a
sorted list that is a permutation of the input, we will be much happier with whatever
the compiler is coming up with for us.

1.1.2 Data types for the working mathematician

So far, we have focused on the needs of the programmer. But, as Martin-Löf [1982]
points out:

If programming is understood not as the writing of instructions for this or
that computing machine but as the design of methods of computation that
it is the computer’s duty to execute [. . .], then it no longer seems possible to
distinguish the discipline of programming from constructive mathematics.

Hence data types should be important also for the constructive mathematician. For
constructive mathematics in the style of Bishop [1967], where mathematics is done
informally (but without the use of the principle of excluded middle), this is perhaps not
immediately obvious. Martin Löf Type Theory was invented with the goal of being “a
full-scale system for intuitionistic mathematics” [Martin-Löf, 1972] carried out in such

3See Section 2.1 for notation and background on dependent types.

3

1. Introduction

an informal fashion. Thus, if a mathematical object has been informally constructed,
it is important that the underlying formal system is able to faithfully represent this
object as well. We will see examples of how inductive-inductive definitions support
such informal mathematical developments in Chapter 7.

1.2 Inductive definitions in Type Theory and set theory

Inductive definitions are ubiquitous in mathematics, perhaps especially so in construc-
tive circles. In this section, we review the basic approaches to formal systems including
such definitions, both in Type Theory, set theory and first order logic.

1.2.1 Inductive definitions in Type Theory

Martin-Löf’s formulations of Type Theory [Martin-Löf, 1972, 1982, 1984] includes induc-
tive definitions of, for example, disjoint unions A +B, the identity set x ≡A y, finite sets
Fin(n), the natural numbers N, well-orderings W(x ∶ A)B(x) and lists ListA, as well as
an inductive-recursive definition of a universe (U,T) à la Tarski; we will come back to
these specific type formers as examples of classes of data types in Section 1.2.1.3. It is
understood that further data types may be added, as long as they are meaningful, i.e.
are supported by the semantics of the language.

This however raises the question: what extensions are meaningful? The possibility
of developing a general formulation of meaningful extensions was mentioned already
by Martin-Löf [1982]4:

The type N is just the prime example of a type introduced by an ordinary
inductive definition. However, it seems preferable to treat this special case
rather than to give a necessarily much more complicated general formulation
which would include (Σx ∶ A)B(x), A +B, Fin(n) and N as special cases.
See Martin-Löf [1971] for a general formulation of inductive definitions in
the language of ordinary first order predicate logic.

1.2.1.1 Schemata of inductive definitions

An early schema of inductive definitions is presented by Martin-Löf [1971], as referred
to in the quote above. In fact, it is so early that it predates Type Theory, and is instead
couched in first-order logic. Backhouse [1988] (see also Backhouse et al. [1989]) was
the first to give a general formulation of “disciplined extensions” of Type Theory. By
defining a schema of inductive definitions, Backhouse shows how the elimination and
computation rules can be automatically derived from the introduction rules, which
can considerably simplify the presentation of the theory. The idea that the elimination
rules for first-order logic are derivable can be found in Prawitz [1979]. In computer
science, the same idea can implicitly be found in Burstall [1969], where (simply typed)

4The notation for the different data types in the quoted text has been changed to coincide with the rest
of this thesis.

4

1.2. Inductive definitions in Type Theory and set theory

data types such as lists and trees are given by constructors, i.e. only their introduction
rules are specified.

However, the schema given by Backhouse allowed inconsistent definitions, since
it did not enforce strict positivity (this is also remarked upon in the conclusion of the
article). Dybjer [1994] gave a different schema, which only gives rise to consistent
definitions. Dybjer proves this using a set-theoretic semantics [Dybjer, 1991]. The
schema also extends Backhouse’s schema in several ways, most notably by also allowing
the inductive definition of a family of types, i.e. an indexed inductive definition. Coquand
and Paulin-Mohring [1990] give a similar schema in the setting of the Calculus of
Constructions [Coquand and Huet, 1988], i.e. impredicative Type Theory.

There are other constructively justified forms of induction-like definitions, such as
Martin-Löf’s universe of small types, that are not covered by the schemas discussed so far.
Dybjer [2000] proposed another schema of inductive-recursive definitions, which does
cover Martin-Löf’s universe and many other examples, such as Martin-Löf’s computabil-
ity predicates [Martin-Löf, 1972] or Aczel’s Frege structures [Aczel, 1980]. Setzer was
interested in inductive-recursive definitions as a proof-theoretically strong extension of
Type Theory, but found the schematic presentation too imprecise for proof-theoretical
analysis. To remedy this, he developed a finite axiomatisation together with Dybjer
[Dybjer and Setzer, 1999] by internalising the schema. This axiomatisation was then
further studied and extended [Dybjer and Setzer, 2003, 2006]. We take much inspiration
from their work in the current thesis. The idea of representing data types internally in
Type Theory has been used for generic programming [Benke et al., 2003; Morris, 2007;
Magalhães, 2012], and forms the basis for all data types in Epigram 2 [Chapman et al.,
2010].

1.2.1.2 Other approaches to inductive definitions

We will use an internalised schema of data type definitions in this thesis. Nonetheless,
let us discuss some other approaches to inductive definitions, and why they are not
suitable for intensional Type Theory.

Containers [Abbott et al., 2005] and indexed containers [Altenkirch and Morris,
2009] give a more semantic view of data types, without e.g. syntactical criterions of strict
positivity. This is very similar to representing inductive definitions by W-types [Dybjer,
1997; Abbott et al., 2004], but makes essential use of extensional Type Theory, which we
wish to avoid for the initial axiomatisation because of its not so nice meta-theoretical
properties (see Section 2.1.6.1). We will explore an inductive-inductive extension of
containers in Section 5.2.

Another option is to use an impredicative Church or Scott encoding of data types.
Pfenning and Paulin-Mohring [1990] explore such encodings for the Calculus of Con-
structions, but this is not a possible solution in Martin-Löf Type Theory, which is a
predicative theory. Furthermore, Church encodings only give rise to non-dependent
elimination principles [Geuvers, 2001].

Yet another option is to add a (least) fixed point operator to the theory [Mendler,
1987]. This is not so different from the schema approach; for instance, one still has to

5

1. Introduction

make sure that the fixed point operator is only applied to strictly positive expressions.
Conceptually, the approach is not so clear, however, as inductive types are represented
as equirecursive types, and hence e.g. the natural numbers N = µX.(1 +X) are both
a sum type and not a sum type at the same time; this often requires the use of subset
types in order to make sense.

1.2.1.3 Different classes of data types in Type Theory

Let us now look at some examples of inductive definitions, such as the natural numbers,
lists, well-orderings, the identity set, finite sets, and a universe à la Tarski. These
examples can be categorised as different kinds of inductive definitions.

The first few (up to well-orderings) are just ordinary inductive definitions, where a
single set is defined inductively. A typical example is the type W(A,B) of well-orderings,
parameterised by A ∶ Set, B ∶ A→ Set. The introduction rule is:

a ∶ A f ∶ B(a) →W(A,B)
sup(a, f) ∶ W(A,B)

Each element of W(A,B) can be thought of as a well-founded tree, where the set A
contains the possible branching types of the tree andB ∶ A→ Set describes the branching
degree of each type. Thus sup(a, f) ∶ W(A,B) is a tree with top-most branching type
a ∶ A, “above” all the subtrees f(b) for b ∶ B(a) (hence the constructor name ‘sup’). Here
a ∶ A is a non-inductive argument, whereas f ∶ B(a) →W(A,B) is an inductive argument
because of the occurrence of W(A,B). Note how the later argument depends on the
earlier non-inductive argument.

The identity type and the finite sets are examples of inductive families, where a whole
family X ∶ I → Set is defined inductively at the same time, for some fixed index set I .
For the family Fin ∶ N→ Set of finite sets (i.e. Fin(n) is a set with n elements), the index
set is the natural numbers N. We have introduction rules

n ∶ N
zn ∶ Fin(n + 1)

n ∶ N m ∶ Fin(n)
sn(m) ∶ Fin(n + 1)

Thus, indeed, the type Fin(n + 1) has n + 1 elements, which can be enumerated as zn,
sn(zn−1), sn(sn−1(zn−2)) up to sn(sn−1(⋯s1(z0))). The type of the inductive argument
m ∶ Fin(n) of the second rule has index n, which is different from the index n + 1 of the
type of the constructed element. Thus the whole family has to be defined at the same
time.

The universe à la Tarski is an example of an inductive-recursive definition, where
a set U is defined inductively together with a recursive function T ∶ U → Set. The
constructors for U may depend negatively on T applied to elements of U , as is the case
if U , for example, is closed under dependent function spaces:

a ∶ U b ∶ T (a) → U

π(a, b) ∶ U

6

1.2. Inductive definitions in Type Theory and set theory

with T (π(a, b)) = (x ∶ T (a)) → T (b(x)).
In the last example, T ∶ U → Set was defined recursively. Sometimes, however, one

might not want to give T (u) completely as soon as u ∶ U is introduced, but instead define
T inductively as well. This is the principle of inductive-inductive definitions. A set A is
inductively defined simultaneously with an A-indexed set B, which is also inductively
defined, and the introduction rules for Amay also refer toB. Typical introduction rules
might take the form

a ∶ A b ∶ B(a) . . .

introA(a, b, . . .) ∶ A
a0 ∶ A b ∶ B(a0) a1 ∶ A . . .

introB(a0, b, a1, . . .) ∶ B(a1)

Notice that this is not a simple mutual inductive definition of two sets, as B is indexed
by A. It is not an ordinary inductive family either, as A may refer to B. Finally, it is not
an instance of induction-recursion, as B is constructed inductively, not recursively.

1.2.1.4 Inductive definitions versus recursive definitions

In both an inductive-inductive and an inductive-recursive definition, a setU and a family
T ∶ U → Set are defined simultaneously. The difference between the two principles
is how T is defined: inductively or recursively. In the following, we first discuss the
difference between an inductive and a recursive definition. To exemplify this difference,
consider the following two definitions of a data type Nonempty ∶ N→ Set of non-empty
lists of a certain length (with elements from a set A):

Inductive definition The singleton list [a] has length 1; and if a is an element, and
the list ` has length n, then cons(a, `) is a list of length n + 1. As an inductive
definition, this becomes

a ∶ A
[a] ∶ Nonemptyind(1)

a ∶ A ` ∶ Nonemptyind(n)
cons(a, `) ∶ Nonemptyind(n + 1)

Notice that there is no constructor which constructs elements of length 0, i.e. in
the set Nonemptyind(0).

Recursive definition In the recursive definition of the data type, we define the set
Nonemptyrec(n) for every natural number:

Nonemptyrec(0) = 0

Nonemptyrec(1) = A
Nonemptyrec(n + 2) = A ×Nonemptyrec(n + 1)

In the recursive definition, Nonemptyrec(k) is defined in one go, whereas the induc-
tively defined Nonemptyind(k) is built up from below. In order to prove that the set
Nonemptyind(0) is empty, one has to carry out a proof by induction over Nonemptyind.

This difference is now carried over to an inductive-recursive/inductive-inductive
definition of U ∶ Set, T ∶ U → Set. In an inductive-inductive definition, T is generated

7

1. Introduction

inductively, i.e. given by a constructor introT ∶ (x ∶ F (U,T)) → T (i(x)) for some (strictly
positive) functor F . In an inductive-recursive definition, on the other hand, T is defined
by recursion on the way the elements of U are generated. This means that T (introU(x))
must be given completely as soon as the constructor introU ∶ G(U,T) → U is introduced.

There are some practical differences between the two approaches. An inductive-
inductive definition gives more freedom to describe the data type, in the sense that many
different constructors for T can contribute to the set T (introU(x)). However, because of
the inductive generation of T , T can only occur positively in the type of the constructors
for U (and T), whereas T can occur also negatively in an inductive-recursive definition.

Finally, as long as U ∶ Set is inductively defined, it makes sense to define T ∶ U →D
recursively for an arbitrary codomain D, such as e.g. D = Set or D = N. By contrast,
it does not make sense to define e.g. T ∶ U → N inductively: this would mean that
T (u) ∶ N should be given by constructors, which is nonsense (a natural number such as
17 does not have elements!). Thus, in an inductive-inductive definition, we are restricted
to families T ∶ U → Set with codomain Set, since only then does it make sense to be
given by constructors. We will see in Section 6.2 that the domain of T can be made
more general for inductive-inductive definitions. See also Ghani et al. [2013b] for such
extensions for inductive-recursive definitions.

1.2.2 Inductive definitions in set theory

We give a quick account of inductive definitions in (classical) set theory using Aczel’s
rule sets. For a more detailed exposition, the reader is referred to Aczel [1977], from
which much of the following material is taken. We will use results from this section in
Section 5.1.

Definition 1.1 Let A be a set.

(i) A rule on the base set A is a pair (X,x) where X ⊆ A is a set – the set of premises –
and x ∈ A – the conclusion of the rule. We often write a rule as

X

x
,

reminiscent of natural deduction.

(ii) Let Φ be a set of rules on A (a rule set on A). A set Y ⊆ A is Φ-closed if for each
rule X

x ∈ Φ, it is the case that X ⊆ Y implies x ∈ Y , i.e. if the premises of a rule are
contained in Y , then so is the conclusion.

(iii) Let Φ be a rule set. The least Φ-closed set is called inductively defined by Φ. ∎

Using impredicativity, the set inductively defined by Φ can always be constructed as

I(Φ) ∶= ⋂{Y ⊆ A ∣ Y is Φ-closed} .

This is an intersection over a non-empty set, as for example A itself is trivially Φ-closed.
Furthermore, the intersection of any collection of Φ-closed sets is Φ-closed. Hence I(Φ)
indeed is the least Φ-closed set.

8

1.2. Inductive definitions in Type Theory and set theory

Examples 1.2 We give some examples of sets defined by rule sets.

(i) The natural numbers are perhaps the most familiar example of an inductively
defined set. They are defined by the rule set (on R, say)

{∅
0
} ∪ { {n}

n + 1
∣ n ∈ N} .

(ii) Let C be a category and let X be a set of morphisms from C. There is a smallest
subcategory CX of C which contains the morphisms in X. The objects of CX are
the domains and codomains of the morphisms in X , and the morphisms are
inductively defined by the rule set (on morphisms from C)

{∅
f

∣ f ∈X}∪{ ∅
idA

∣A object in CX}∪{{f, g}
f ○ g ∣ f , g composable morphisms in C} .

(iii) Well-formed arithmetical terms built up from constants 0, 1, a unary operator −
and binary operators + and × are inductively defined by the rule set (on the set S
of finite strings on the alphabet {0,1,−,+,×, (,)})

{∅
0
} ∪ {∅

1
} ∪ { {x}

−(x) ∣ x ∈ S} ∪ { {x, y}
(x + y) ∣ x, y ∈ S} ∪ { {x, y}

(x × y) ∣ x, y ∈ S} . ∎

We see here an important distinction between inductive definitions in set theory
and inductive definitions in Type Theory (see Section 1.2.1). In Type Theory, we think
of inductive definitions as a method for generating new types. In contrast, in set
theory all sets already exist. To form the rule set which defines the natural numbers
in Examples 1.2(i), we already need the natural numbers! In this sense, rule sets are
more like predicates defined as inductive families in Type Theory. Kleene [1952] makes
the distinction between fundamental and non-fundamental inductive definitions, where
rule sets give rise to the latter. For our purposes, this is not a problem, since we are
interested in set theory (and inductive definitions therein) mostly as a model for Type
Theory, and not as a foundational theory in itself.

There is an alternative presentation of rule sets on A as monotone operators on
P(A), i.e. functions ϕ ∶ P(A) → P(A) such that if X ⊆ Y then ϕ(X) ⊆ ϕ(Y). Given a
monotone operator ϕ ∶ P(A) → P(A), there is a corresponding rule set

Φϕ = {X
y

∣ X ⊆ A,y ∈ ϕ(X)} ,

and we then have that Y ⊆ A is Φϕ-closed if and only if ϕ(Y) ⊆ Y . Conversely, given a
rule set Φ on A, we define a monotone operator ϕΦ ∶ P(A) → P(A) by

ϕΦ(Y) = {x ∈ A ∣ X
x

∈ Φ for some X ⊆ Y } .

Then Y ⊆ A is Φ-closed if and only if ϕΦ(Y) ⊆ Y . Hence the set inductively defined by
Φ can equivalently be described as the least set Y such that ϕΦ(Y) ⊆ Y . This suggests
the following transfinite construction of I(Φ) “from below”:

9

1. Introduction

Proposition 1.3 Let Φ be a rule set on A. Define by transfinite recursion

ϕ0 = ∅
ϕα+1 = ϕΦ(ϕα)
ϕλ = ⋃

β<λ
ϕΦ(ϕβ) λ limit

Then there is some κ ≤ ∣A∣ such that I(Φ) = ϕκ, and I(Φ) is the least fixed point of ϕΦ.

Proof. Let κ be the least ordinal such that ϕκ+1 = ϕκ. Such a κ ≤ ∣A∣ must exist, since ϕΦ

is monotone; hence, if we have not reached a fixed point yet, we are adding at least one
new element at each iteration. Since ϕα ⊆ A for all α, we can do this at most ∣A∣ times.
We then have ϕΦ(ϕκ) = ϕκ, in particular ϕΦ(ϕκ) ⊆ ϕκ and hence I(Φ) ⊆ ϕκ since I(Φ)
is the least Φ-closed set. In the other direction, we can easily prove ϕα ⊆ I(Φ) for all α
by transfinite induction, since ϕΦ is monotone. Hence I(Φ) = ϕκ, and ϕκ is the least
fixed point of ϕΦ by construction.

From a categorical perspective, ϕα is the initial sequence of the functor ϕΦ ∶ P(A) →
P(A), and the proposition says that the sequence stabilises. The bound κ ≤ ∣A∣ is fine
if we already know that we are dealing with a rule set on A. However, we often do
not know a base set beforehand, but only have some large set V with the appropriate
closure properties which we hope will contain all the types of the model. A bound ≤ ∣V ∣
is then not good enough, as iterating ∣V ∣ times might make us end up with a set which
is too large to be contained in V . Thankfully, we can often give more precise bounds.

Definition 1.4 Let κ be a cardinal. An operator ϕ is κ-based if x ∈ ϕ(X) implies x ∈ ϕ(Y)
for some Y ⊆X of cardinality < κ. ∎

Examples 1.5

(i) If ϕ(X) = A→X for some set A, then ϕ is κ-based for all κ > ∣A∣.

(ii) Monotone operators ϕ corresponding to a finitary rule sets, i.e. rule sets where
each set of premises is finite, are ω-based. ∎

Proposition 1.6 Let ϕΦ be a κ-based monotone operator for a regular cardinal κ. Then
I(Φ) = ϕκ.

Proof. We need to show ϕΦ(ϕκ) = ϕκ. The direction ϕΦ(ϕκ) ⊇ ϕκ is clear by monotonic-
ity of ϕΦ. For the other direction, let x ∈ ϕΦ(ϕκ). Then x ∈ ϕΦ(Y) for some Y ⊆ ϕκ of
cardinality < κ. But by the regularity of κ, then already Y ⊆ ϕβ for some β < κ and
x ∈ ϕΦ(Y) ⊆ ϕΦ(ϕβ) = ϕβ+1 ⊆ ϕκ.

1.3 Overview

The rest of the thesis is structured in the following way:

10

1.3. Overview

• Chapter 2 introduces Martin-Löf type theory, including the notation and conven-
tions we will use for the rest of the thesis. The content is entirely standard.

• In Chapter 3, we give several examples of inductive-inductive definitions. We
then present a general finite axiomatisation of such definitions which extends the
type theory introduced in Chapter 2. There are no deep theorems in this chapter,
instead we introduce the object of study for the chapters to come.

• Chapter 4 gives an alternative, categorical characterisation of the elimination
rules for inductive-inductive definitions. Along the way, we develop a theory
of generic eliminators, using the concept of a Category with Families. The main
result is an equivalence between the elimination rules and the existence of an
initial object in a certain category (Theorem 4.43).

• In Chapter 5, the semantics of inductive-inductive definitions is considered. We
give two different models: a set-theoretic one (Theorem 5.14), and an interpre-
tation of inductive-inductive definitions as indexed inductive definitions (The-
orem 5.39). The latter translation is simplified by first giving an “inductive-
inductive container” semantics (Corollaries 5.19 and 5.25) for inductive-inductive
definitions.

• The theory as presented in Chapter 3 is not strong enough to cover all the exam-
ples of inductive-inductive definitions that have appeared in the literature. In
Chapter 6, we consider several extensions that makes it possible to handle the
other examples, and prove that the set-theoretic model from Chapter 5 can be
extended to handle the extended theory (Theorem 6.15).

• Chapter 7 puts the theory to use and considers two larger examples of uses of
inductive-inductive definitions: Conway’s surreal numbers and another variant
of inductive-recursive definitions which is attractive from a categorical point of
view.

• Finally, Chapter 8 concludes and outlines plans for future research.

Publications

Parts of this thesis have been published in peer-reviewed conferences:

(i) Inductive-inductive definitions. With Anton Setzer. In Anuj Dawar and Helmut
Veith, editors, Computer Science Logic, volume 6247 of Lecture Notes in Computer
Science, pages 454–468. Springer, 2010. [Nordvall Forsberg and Setzer, 2010].

(ii) A categorical semantics for inductive-inductive definitions. With Thorsten Al-
tenkirch, Peter Morris, and Anton Setzer. In Andrea Corradini, Bartek Klin, and
Corina Cirstea, editors, Conference on Algebra and Coalgebra in Computer Science,
volume 6859 of Lecture Notes in Computer Science, pages 70 – 84. Springer, 2011.
[Altenkirch et al., 2011].

11

1. Introduction

(iii) A finite axiomatisation of inductive-inductive definitions. With Anton Setzer.
In Ulrich Berger, Hannes Diener, Peter Schuster, and Monika Seisenberger, editors,
Logic, Construction, Computation, volume 3 of Ontos mathematical logic, pages 259 –
287. Ontos Verlag, 2012. [Nordvall Forsberg and Setzer, 2012].

(iv) Positive inductive-recursive definitions. With Neil Ghani and Lorenzo Malat-
esta. In Reiko Heckel, and Stefan Milius, editors, invited paper Conference on
Algebra and Coalgebra in Computer Science, volume 8089 of Lecture Notes in Computer
Science, pages 19 – 33. Springer, 2013. [Ghani et al., 2013a].

My contributions to the publications are:

(i) I wrote the entire article, and did most of the work for it (in collaboration with
Anton Setzer). Most of the material has been superceded by Article (iii), but traces
can still be found in Chapters 3 and 5.

(ii) I wrote the entire article. The initial idea came from Thorsten Altenkirch and
Peter Morris, and was then developed by me. Parts of Chapter 4 is based on this
article.

(iii) I wrote the entire article. This is a refinement of Article (i), taking ideas from
Article (ii) into account. Chapter 3 is based on this article.

(iv) The article is jointly written by Lorenzo Malatesta and me (except for Section 4,
which is written by Neil Ghani), and is truly joint work, after an initial idea from
Lorenzo Malatesta and Neil Ghani. The material developed in the article makes
up the first half of Chapter 7.

12

Chapter2

Martin-Löf Type Theory

Contents
2.1 An intuitionistic theory of types . 13
2.2 The dependently typed programming language and proof assistant

Agda . 28
2.3 Category theory in Type Theory . 30

This chapter contains the necessary background material for the rest of the thesis. We
introduce Martin-Löf Type Theory, the system we will be working in and extending.
As a large part of the thesis applies categorical methods, we also discuss the status of
category theory in and for Type Theory.

2.1 An intuitionistic theory of types
We present the monomorphic version of Martin-Löf’s Type Theory, presented using the
Logical Framework. This corresponds to the presentation in Nordström et al. [1990, Part
III]. As is usually done, we formulate the rules in the style of natural deduction [Prawitz,
1965]. To make the presentation easier to digest, we split it up into several definitions.
The rules of Type Theory are all the rules presented in Axioms 2.1 to 2.5 and 2.7 in this
section.

Martin-Löf Type Theory is a theory about types and their elements. We can think of
types and terms in many ways: as sets and elements, spaces and points, propositions
and proofs, or specifications and programs, for instance. As a formal theory, Type
Theory contains rules for making judgements of the following forms:

• A is a type, written A type .

• A and B are equal types, written A = B .

• a is a term of the type A, written a ∶ A .

13

2. Martin-Löf Type Theory

• a and b are equal terms of the type A, written a = b ∶ A .

We will later introduce a type Set which we think of as containing small sets, which
will lead to further (derived) judgements such as A ∶ Set and a ∶ A for A ∶ Set.

In general, a judgement is made under assumptions, which are collected in a context
Γ. Hence we will also need a fifth judgement, namely that a given context Γ is well-
formed, i.e. consists of distinct variables of well-formed types, written Γ context . We
write the context in front of the other judgements, and separate the context and the
judgement with a turnstile, like so:

Γ ⊢ A type Γ ⊢ A = B Γ ⊢ a ∶ A Γ ⊢ a = b ∶ A

Following Troelstra [1987], when the context Γ is unchanged from the hypothesis
to the conclusion in a rule, we will omit both Γ and the turnstile ⊢. We will take
similar notational shortcuts in the running text, so that for instance a sentence “let
x ∶ A . . . ” should be understood in an arbitrary context Γ. A context consists of a
telescope [de Bruijn, 1991] of typing judgements

x1 ∶ A1, x2 ∶ A2(x1), . . . , xn ∶ An(x1, x2, . . . , xn−1)

i.e. we require that each Ai is a type in the smaller context x1 ∶ A1, . . . , xi−1 ∶ Ai−1:

⊢ A1 type

x1 ∶ A1 ⊢ A2(x1) type

⋮
x1 ∶ A1, x2 ∶ A2, . . . , xn−1 ∶ An−1 ⊢ An(x1, x2, . . . , xn−1) type .

As a notational aid, we have indicated the free variables of the types in the context in
brackets. Formally, we can inductively define context validity by the following two
rules, where we write ◇ for the empty context (we will omit ◇ in judgements ◇ ⊢ J and
simply write ⊢ J):

Axiom 2.1 (Valid contexts) Valid contexts are inductively generated by the following
two rules:

◇ context

Γ context Γ ⊢ A type

(Γ, x ∶ A) context
(x ∉ FV (Γ))

Here, the side condition x ∉ FV (Γ) means that x is not among the free variables
declared in Γ. In a fully formalised account, one could use for instance de Bruijn
indices [de Bruijn, 1972] to get rid of this side condition. ∎

Note how this definition refers to the definition of A type, which in turn refers to the
definition of contexts. As we will see in Section 3.1, this means that the very definition
of Type Theory has a flavour of the kind of definitions that this thesis is studying.

Given a typeB depending on x ∶ A (i.e. x ∶ A ⊢ B(x) type) and a term a ∶ A, we write
B[x↦ a] forB where we have substituted every free occurrence of x by a, and similarly

14

2.1. An intuitionistic theory of types

for a term x ∶ A ⊢ b(x) ∶ B(x). We can extend this to the simultaneous substitution of n
terms

Γ ⊢ a1 ∶ A1

Γ ⊢ a2 ∶ A2[x1 ↦ a1]
⋮

Γ ⊢ an ∶ An[x1 ↦ a1, . . . , xn−1 ↦ an−1]

into a type x1 ∶ A1, x2 ∶ A2(x1), . . . , xn ∶ An(x1, . . . , xn−1) ⊢ B(x1, . . . , xn) type. After we
have introduced function types in Section 2.1.2, we can relax the notation a bit and
simply write Γ ⊢ B(a1, . . . , an) type for Γ ⊢ B[x1 ↦ a1, . . . , xn ↦ an] type. We identify
types and terms up to α-conversion, i.e. up to renaming of variables. In general, we
employ the Barendregt convention [Barendregt, 1984] and make sure that we always
choose free variable names distinct from bound ones.

We now present the rest of the rules. The rules can be divided into four main
groups: general rules for equality and substitution, rules for the function type, rules
for set formation and rules for some basic set formers. The other set formers will be
introduced via the principle of inductive-inductive definitions in Chapter 3. The rules
for the different type and set formers follow a common pattern. They can be further
categorised to be of one of the following forms:

• The formation rule for A describes when we may infer that A is a type or a set.

• The introduction rules for A describe how to introduce canonical elements of type
A. This corresponds to listing the constructors for A.

• The elimination rules for A describe how to prove a proposition about an arbitrary
element of type A. This corresponds to primitive recursion or proof by induction.
The “target type” P ∶ A → Set of the elimination rule is called the motive of the
rule.

• The computation rules describe the computational behaviour of the eliminators.

2.1.1 General equality and substitution rules

The following rules form the equality, substitution and variable assumption rules of
Type Theory. They are entirely standard.

Axioms 2.2 Equality of types is an equivalence relation:

A type

A = A
A = B
B = A

A = B B = C
A = C

Equality of elements is an equivalence relation:

a ∶ A
a = a ∶ A

a = b ∶ A
b = a ∶ A

a = b ∶ A b = c ∶ A
a = c ∶ A

15

2. Martin-Löf Type Theory

Typing and equality is well-behaved:

a ∶ A A = B
a ∶ B

a = b ∶ A A = B
a = b ∶ B

Substitution interacts well with equality:

Γ, x ∶ A ⊢ B(x) type Γ ⊢ a ∶ A
Γ ⊢ B[x↦ a] type

Γ, x ∶ A ⊢ B(x) =D(x) Γ ⊢ a = c ∶ A
Γ ⊢ B[x↦ a] =D[x↦ c]

Γ, x ∶ A ⊢ b(x) ∶ B(x) Γ ⊢ a ∶ A
Γ ⊢ b[x↦ a] ∶ B(a)

Γ, x ∶ A ⊢ b(x) = d(x) ∶ B(x) Γ ⊢ a = c ∶ A
Γ ⊢ b[x↦ a] = d[x↦ c] ∶ B(a)

Assumption:
Γ, x ∶ A,∆ context

Γ, x ∶ A,∆ ⊢ x ∶ A ∎

Notice in the assumption rule that for Γ, x ∶ A,∆ context to be valid, we need Γ ⊢ A type.

2.1.2 Set and function types

We now introduce a type (universe) Set of small types. Most of the time, we will
work with small types only, and only use the large types of the logical framework to
simplify the description of e.g. the elimination rules for sets. Notable exceptions are
the universes SPA and SPB of codes for inductive-inductive definitions that we will
introduce in Chapter 3. Since certain codes quantify over arbitrary small sets, and we
want a predicative theory, we cannot make the universe of codes itself a small type.

Axioms 2.3 (The type of sets) Formation rule for Set:

Γ context
Γ ⊢ Set type

The elements of a set form a type:

A ∶ Set
El(A) type

Congruence for El:
A = B ∶ Set

El(A) = El(B) ∎

Since no confusion is possible, we will allow ourselves to write a ∶ A as a shorthand
for a ∶ El(A) if A ∶ Set. In a way, we are treating the large universe à la Tarski (Set,El)
as a universe à la Russel [Martin-Löf, 1984]. Morally, we are employing a particularly
simple form of coercive subtyping [Luo et al., 2012] Set ≤El type, were it not for the fact
that type is not an object in our theory (see also Luo [2012]).

16

2.1. An intuitionistic theory of types

Next we introduce the rules for function types and function sets, also called Π-types.
We deliberately use the same notation for both, so that we can get away with stating
most rules only once. Of course, officially there are two sets of rules, one for function
types and one for function sets. Function types are essential for describing families of
sets in the theory.

Axioms 2.4 (Function types and dependent functions) Function type formation:

Γ ⊢ A type Γ, x ∶ A ⊢ B(x) type

Γ ⊢ ((x ∶ A) → B(x)) type

Γ ⊢ A ∶ Set Γ, x ∶ A ⊢ B(x) ∶ Set

Γ ⊢ ((x ∶ A) → B(x)) ∶ Set

Function type introduction:

Γ, x ∶ A ⊢ b(x) ∶ B(x)
Γ ⊢ λ(x ∶A). b(x) ∶ (x ∶ A) → B(x)

Function application:

f ∶ (x ∶ A) → B(x) a ∶ A
f(a) ∶ B[x↦ a]

Computation (β equality):

Γ, x ∶ A ⊢ b(x) ∶ B(x) Γ ⊢ a ∶ A
Γ ⊢ (λ(x ∶A). b(x))(a) = b[x↦ a] ∶ B[x↦ a]

Equalities with and under binders (η and ξ equality):

f ∶ (x ∶ A) → B(x)
λ(x ∶A). f(x) = f ∶ (x ∶ A) → B(x)

Γ, x ∶ A ⊢ f(x) = g(x) ∶ B(x)
Γ ⊢ λ(x ∶A). f(x) = λ(x ∶A). g(x) ∶ (x ∶ A) → B(x)

Function type congruences:

Γ ⊢ A = C Γ, x ∶ A ⊢ B(x) =D(x)
Γ ⊢ ((x ∶ A) → B(x)) = ((x ∶ C) →D(x))

f = g ∶ (x ∶ A) → B(x) a = b ∶ A
f(a) = g(b) ∶ B[x↦ a] ∎

We write A → B for (x ∶ A) → B if x does not occur in B. Furthermore, we will
sometimes write λx. e for λ(x ∶A). e if the type A of x can be inferred from context,
and we write repeated application as f(x1, . . . , xk). Now that we have introduced
function types and the type Set, we can introduce sets by defining different constants,
and asserting equalities between elements in the sets. Note first that with the rules for
function introduction and application, there is no essential difference between a family
of sets Y ∶ (x ∶ X) → Set and a set Y (x) with a free variable x ∶ X anymore: Given
Y ∶ (x ∶X) → Set, we can derive

Γ, x ∶X ⊢ Y ∶ (x ∶X) → Set Γ, x ∶X ⊢ x ∶X
Γ, x ∶X ⊢ Y (x) ∶ Set

17

2. Martin-Löf Type Theory

using application, and given Γ, x ∶X ⊢ Y (x) ∶ Set, we derive

Γ, x ∶X ⊢ Y (x) ∶ Set

Γ ⊢ λ(x ∶X). Y (x) = Y ∶ (x ∶X) → Set

Γ ⊢ Y ∶ (x ∶X) → Set

using introduction and the η-rule.
Thus, instead of introducing the function sets as we just did, we could have intro-

duced constants

Π ∶ (X ∶ Set) → (Y ∶X → Set) → Set

λ ∶ (X ∶ Set) → (Y ∶X → Set) → ((x ∶X) → Y (x)) → Π(X,Y)
apply ∶ (X ∶ Set) → (Y ∶X → Set) → Π(X,Y) → (x ∶X) → Y (x)

and asserted the equality

apply(X,Y,λ(X,Y, b), a) = b(a) ∶ B(a)

The formation, introduction, application, computation and congruence rules above
would then be derivable. We would still have to assert the η and ξ rules. Even if we
continue to present the rest of the rules in natural deduction style, we officially consider
this to be a shorthand for the constant approach above. This way, there is no further
need to state any more congruence rules, as they are included in the congruence rules
for function types.

2.1.3 Sets as type constants

We now introduce some further sets by postulating the existence of certain constants.
We can get away with quite a small collection of sets: the empty set, the unit set, the
Booleans and Σ-types. In particular, at this stage we do not need to introduce any
infinite or “properly inductive sets”, since we will get them via inductive-inductive
definitions in Chapter 3.

Axioms 2.5 (The sets 0, 1 and 2) Formation rules:

Γ context
Γ ⊢ 0 ∶ Set

Γ context
Γ ⊢ 1 ∶ Set

Γ context
Γ ⊢ 2 ∶ Set

Introduction rules:
⋆ ∶ 1 tt ∶ 2 ff ∶ 2

The elimination rule for 0 and the η rule for 1:

P ∶ 0→ Set x ∶ 0
!P (x) ∶ P (x)

x ∶ 1
x = ⋆ ∶ 1

Elimination rule for 2:
Γ, x ∶ 2 ⊢ P (x) type Γ ⊢ a ∶ P (tt) Γ ⊢ b ∶ P (ff) y ∶ 2

Γ ⊢ ifP y then a else b ∶ P (y)

18

2.1. An intuitionistic theory of types

Computation rules for 2:

ifP tt then a else b = a ∶ P (tt)
ifP ff then a else b = b ∶ P (ff) ∎

We will write ! and if ⋅ then ⋅ else ⋅ for !P and ifP ⋅ then ⋅ else ⋅ respectively if P can
be inferred from the context.

Proposition 2.6 We can define a constant elim1 such that the elimination rule

P ∶ 1→ Set m ∶ P (⋆) x ∶ 1
elim1(P,m,x) ∶ P (x)

with computation rule
elim1(P,m,⋆) =m ∶ P (⋆)

is derivable.

Proof. Since x = ⋆ by the η rule, the computation rule determines elim1 uniquely and
can be taken as a definition.

We would now like to draw attention to the only perhaps unusual feature of the
type theory presented here: we have large elimination for Booleans. This will make it
possible to simplify the axiomatisation in Chapter 3 slightly (see Section 3.2.3.5). For
the same reason, we added the η rule for the unit type. We stress that these features are
not required for the development to come; we could work in a type theory without η
equality and large elimination for Booleans, if we pay the higher price of adding the
rules we now can derive to our axiomatisation.

We now introduce the last set former we need, the set of dependent pairs, also called
Σ-types:

Axioms 2.7 (Dependent pairs) Formation rule:

Γ ⊢ A ∶ Set Γ, x ∶ A ⊢ B(x) ∶ Set

Γ ⊢ (Σx ∶ A)B(x) ∶ Set

Introduction rule:
a ∶ A b ∶ B(a)

⟨a, b⟩ ∶ (Σx ∶ A)B(x)
Elimination rules (projections):

p ∶ (Σx ∶ A)B(x)
fst(p) ∶ A

p ∶ (Σx ∶ A)B(x)
snd(p) ∶ B(fst(p))

Surjective pairing (η equality):

p ∶ (Σx ∶ A)B(x)
p = ⟨fst(p), snd(p)⟩ ∶ (Σx ∶ A)B(x)

19

2. Martin-Löf Type Theory

Computation rules:

fst(⟨a, b⟩) = a ∶ A
snd(⟨a, b⟩) = b ∶ B(a) ∎

If B(x) does not depend on x, we write A×B for (Σx ∶ A)B(x). We have presented
both Π-types and Σ-types in a negative way (see e.g. Zeilberger [2009]), i.e. characterised
by their observations – applications and projections. However, since we also included η
rules, we can actually recover the positive point of view as well:

Proposition 2.8 We can define a constant split such that the elimination rule

P ∶ (Σx ∶ A)B(x) → Set m ∶ (a ∶ A) → (b ∶ B(a)) → P (⟨a, b⟩) y ∶ (Σx ∶ A)B(x)
split(P,m, y) ∶ P (y)

with computation rule

split(P,m, ⟨a, b⟩) =m(a, b) ∶ P (⟨a, b⟩)

is derivable.

Proof. We define split(P,m, y) ∶= m(fst(y), snd(y)) ∶ P (⟨fst(y), snd(y)⟩). This is type-
correct since ⟨fst(y), snd(y)⟩ = y by surjective pairing, and the computation rule holds
by the computation rules for fst and snd.

We can of course also define fst and snd in terms of split, had we chosen to introduce
split as the basic notion. We can also prove the η rule up to propositional equality
(see Section 2.1.6). In fact, such a propositional η rule and projections are equivalent
to the general elimination rule. Garner [2009] shows the same result for Π-types, i.e.
propositional η and application is equivalent to elimination. Garner also shows that
application without η does not entail the general elimination rule.

2.1.4 Derived rules and meta-theoretical properties

One set former that seems to be missing from the previous section is the sum, or disjoint
union, of two sets A +B. This is not a problem, since large elimination for Booleans,
which we need for other reasons, allows us to also construct sums in the following way:

Proposition 2.9 We can define the disjoint union of two sets A and B satisfying the
following rules.

Formation rule:
A ∶ Set B ∶ Set

A +B ∶ Set

Introduction rules:

a ∶ A
inl(a) ∶ A +B

b ∶ B
inr(b) ∶ A +B

20

2.1. An intuitionistic theory of types

Elimination rule:

P ∶ (x ∶ A +B) → Set
f ∶ (x ∶ A) → P (inl(x))
g ∶ (y ∶ B) → P (inr(y)) c ∶ A +B

[f, g]P (c) ∶ P (c)

Computation rules:

[f, g]P (inl(a)) = f(a) ∶ P (inl(a))
[f, g]P (inr(b)) = g(b) ∶ P (inr(b)) .

Proof. We can define A +B ∶= (Σx ∶ 2)(if x then A else B) and then

inl(a) ∶= ⟨tt, a⟩
inr(b) ∶= ⟨ff, b⟩

[f, g]P (c) ∶= split(P,λx. ifλz. (y ∶ (if z then A else B))→P (⟨z,y⟩) x then f else g, c)

We easily check that e.g.

[f, g]P (inl(a)) = split(P,λx. if x then f else g, ⟨tt, a⟩)
= (if tt then f else g)(a)
= f(a)

and similarly for [f, g]P (inr(b)) = g(b).

In the presence of extensional identity types (see Section 2.1.6), large elimination
is not needed. In this setting, Troelstra [1983] encodes sums using Σ-types, function
types, identity types and Booleans (without large elimination). Note also that Booleans
can be encoded using sums: 2 = 1 + 1, but without large elimination.

We now give the main meta-theoretical results about the Type Theory presented.
The proofs are standard, and can be found in e.g. Goguen [1994]; Luo [1994]; Werner
[1994]. Some of them serve as sanity checks for the Type Theory, others will be implicitly
used in the rest of this thesis. It is not such a bold conjecture that these properties will
continue to hold when we extend the theory in the coming chapters.

We write Γ ⊢ J for an arbitrary judgement of the form Γ context, Γ ⊢ A type or
Γ ⊢ t ∶ A.

Proposition 2.10 (Weakening) Let Γ,∆ be a valid context such that Γ ⊢ A type, and
assume x ∉ FV (Γ). If Γ,∆ ⊢ J is derivable then so is Γ, x ∶ A,∆ ⊢ J .

Proposition 2.11 (Substitution) Let Γ, x ∶ A,∆ be a valid context and Γ ⊢ t ∶ A. If the
judgement Γ, x ∶ A,∆ ⊢ J is derivable, then so is Γ,∆[x↦ t] ⊢ J [x↦ t].

Proposition 2.12 (Sanity checks)

(i) If Γ ⊢ J , then Γ context.

21

2. Martin-Löf Type Theory

(ii) If Γ ⊢ a ∶ A or Γ ⊢ A = B, then Γ ⊢ A type.

(iii) If Γ ⊢ a = b ∶ A, then Γ ⊢ a ∶ A.

Proposition 2.13 (Unicity of typing) If Γ ⊢ a ∶ A and Γ ⊢ a ∶ B then Γ ⊢ A = B.

Theorem 2.14 (Strong normalisation) By directing the computation rules from left to
right, one obtains a strongly normalising rewrite system.

Theorem 2.15 (Decidable type checking) Given a judgement Γ ⊢ J , it is decidable if
there is a derivation of Γ ⊢ J or not.

2.1.5 The Curry-Howard isomorphism: propositions-as-types

Martin-Löf Type Theory is “intended to be a full scale system for formalising intuition-
istic mathematics” [Martin-Löf, 1972], but so far, we have introduced something more
along the lines of a programming language. Logic and reasoning is reintroduced via
the Curry-Howard isomorphism [Curry, 1934; Curry and Feys, 1958; Howard, 1969]
(see also Scott [1970]). Propositions are identified with types consisting of their proofs,
as can be seen in Table 2.1.

Table 2.1: Propositions as types.

Proposition Type

� 0
⊺ e.g. 1

A ∧B A ×B
A ∨B A +B
A⇒ B A→ B

(∃x ∶ A)B(x) (Σx ∶ A)B(x)
(∀x ∶ A)B(x) (x ∶ A) → B(x)

This is in accordance with the Brouwer-Heyting-Kolmogorov interpretation (see e.g.
Troelstra and van Dalen [1988]) of intuitionistic logic:

• There is no proof of �, since there is no element of type 0.

• A proof p = ⟨q, r⟩ of A ∧B consists of a proof q of A and a proof r of B.

• A proof p of A ∨B is either of the form inl(q) where q is a proof of A, or of the
form inr(r) where r is a proof of B. Hence a proof of A ∨B is either a proof of A
or a proof of B, and we can tell which one it is.

• A proof of A⇒ B is a function that transforms proofs of A into proofs of B.

• A proof p = ⟨a, q⟩ of (∃x ∶ A)B(x) is a witness a ∶ A, together with a proof q of
B(a).

22

2.1. An intuitionistic theory of types

• A proof p of (∀x ∶ A)B(x) is a function which given a ∶ A produces a proof of
B(a).

The only thing lacking are atomic propositions, except for ⊺ and �. We will intro-
duce equality in the next section, and a lot more data types corresponding to atomic
propositions in Chapter 3.

Remark 2.16 The correspondence between propositions and types, and proofs and
programs is called an isomorphism, and not just a bijection, since it also preserves
reductions: the computation rules we have specified correspond exactly to proof nor-
malisation from proof theory [Girard et al., 1989].

Example 2.17 For types A ∶ Set and B ∶ Set, and a predicate P ∶ A → B → Set, let us
prove the proposition

(∃x ∶ A)(∀y ∶ B)P (x, y) ⇒ (∀y ∶ B)(∃x ∶ A)P (x, y)

in Type Theory. By the propositions-as-types principle, this corresponds to constructing
a term of type

(Σx ∶ A)((y ∶ B) → P (x, y)) → (y ∶ B) → (Σx ∶ A)P (x, y)

Here is the typing derivation for such a term:

D
Γ ⊢ p ∶ (Σx ∶ A)((y ∶ B) → P (x, y))

Γ ⊢ fst(p) ∶ A

D
Γ ⊢ p ∶ (Σx ∶ A)((y ∶ B) → P (x, y))

snd(p) ∶ (y ∶ B) → P (fst(p), y)
D

Γ ⊢ b ∶ B
Γ ⊢ snd(p)(b) ∶ P (fst(p), b)

Γ ⊢ ⟨fst(p), snd(p)(b)⟩ ∶ (Σx ∶ A)P (x, b)
p ∶ (Σx ∶ A)((y ∶ B) → P (x, y)) ⊢ λb. ⟨fst(p), snd(p)(b)⟩ ∶ (y ∶ B) → (Σx ∶ A)P (x, y)
⊢ λp.λb. ⟨fst(p), snd(p)(b)⟩ ∶ (Σx ∶ A)((y ∶ B) → P (x, y)) → (y ∶ B) → (Σx ∶ A)P (x, y)

where we have written Γ ∶= [p ∶ (Σx ∶ A)((y ∶ B) → P (x, y)), b ∶ B] andD is the following
derivation of Γ context:

◇ context

⊢ A ∶ Set

x ∶ A ⊢ B ∶ Set x ∶ A,y ∶ B ⊢ P (x, y) ∶ Set

x ∶ A ⊢ (y ∶ B) → P (x, y) ∶ Set

⊢ (Σx ∶ A)((y ∶ B) → P (x, y)) ∶ Set

p ∶ (Σx ∶ A)((y ∶ B) → P (x, y)) context . . . ⊢ B ∶ Set

Γ context

By Theorem 2.15, the whole derivation can be reconstructed from the proof term

λp.λb. ⟨fst(p), snd(p)(b)⟩ ∶ (Σx ∶ A)((y ∶ B) → P (x, y)) → (y ∶ B) → (Σx ∶ A)P (x, y) ,

and so, we will not display the derivation trees in the rest of this thesis. ∎

23

2. Martin-Löf Type Theory

2.1.6 Equality and identity types

We now introduce another type former, namely the identity type x ≡A y whose in-
habitants are proofs that x and y are equal elements of type A. Actually, this is not
necessary: the identity type is an indexed inductive definition, and can hence be defined
using the principle of inductive-inductive definitions in Chapter 3. When giving the
axiomatisation of inductive-inductive definitions, we will be careful not to make use of
the identity type, so that we do not need to add it to our theory. Nevertheless, we still
need to develop some standard infrastructure for making use of identity types, and will
in certain parts go beyond the inductively defined identity type and use extensional
equality, and so, we introduce the type former now.

2.1.6.1 Intensional and extensional Type Theory

We introduce the (intensional) identity type with the following rules:

Axiom 2.18 Formation rule:
A type x, y ∶ A

x ≡A y

Introduction rule:
refl ∶ x ≡A x

Elimination rule:

P ∶ (x, y ∶ A) → x ≡A y → Set steprefl ∶ (x ∶ A) → P (x,x, refl)
x, y ∶ A
p ∶ x ≡A y

Γ ⊢ elim≡(P, steprefl, x, y, p) ∶ P (x, y, p)

Computation rule:

elim≡(P, steprefl, x, x, refl) = steprefl(x) ∶ P (x,x, refl) ∎

We see that by applying structural rules, we can make the rule

x = y ∶ A
refl ∶ x ≡A y

admissible. The converse of this rule

refl ∶ x ≡A y
x = y ∶ A (equality reflection)

is called equality reflection and is not derivable in general [Hofmann and Streicher, 1998].
If equality reflection is added to the theory, then whenever p ∶ x ≡A y also refl ∶ x ≡A y.
Hence we might as well add a coherence rule

p ∶ x ≡A y
p = refl ∶ x ≡A y

(equality coherence)

24

2.1. An intuitionistic theory of types

The theory we get if we add these two rules is called extensional Type Theory. It is
consistent (in fact, most known models for Type Theory validates equality reflection),
but has some less than ideal properties: type checking is undecidable (intuitively
because the the type checker might need to make up arbitrarily complex equality proofs
to see that a term is well-typed) and the theory is not strongly normalising (intuitively
because in an inconsistent context, we can e.g. fool the system to believe thatA = A→ A
for some non-trivial set A, and then embed the untyped lambda calculus). We will use
extensional Type Theory in some parts of this thesis, but will always point out when
we do so.

There is a related concept of function extensionality, which says that extensionally
equal functions are equal. In other words, function extensionality is the statement that
there is a term extf,g for f, g ∶ (x ∶ A) → B(x) of type

extf,g ∶ ((x ∶ A) → f(x) ≡B(x) g(x)) → f ≡(x∶A)→B(x) g

Function extensionality follows from extensional Type Theory (hence the name!), but
is also available in more well-behaved type theories such as Observational Type The-
ory [Altenkirch et al., 2007] and Homotopy Type Theory1 [The Univalent Foundations
Program, 2013]. For this reason, we consider function extensionality acceptable, but
will (not always successfully) try to avoid using it.

2.1.6.2 Properties of the intensional identity type

The identity type has all the structure one might expect:

Lemma 2.19 Propositional equality is symmetric, transitive and substitutive, i.e. there
are terms

(i) sym ∶ x ≡A y → y ≡A x with sym(refl) = refl,

(ii) trans ∶ x ≡A y → y ≡A z → x ≡A z with trans(refl, p) = p, and

(iii) subst ∶ (P ∶ A→ Set) → x ≡A y → P (x) → P (y) with subst(P, refl, x) = x.

Proof. See e.g. Nordström et al. [1990, Chapter 8].

The next property of propositional equality is also standard, but we include its proof
since it is similar to the proof of the next lemma, which is more technical.

Lemma 2.20 Propositional equality is a congruence with respect to every function, i.e.
there is a term

congA,B ∶ (f ∶ A→ B) → (x ∶ A) → (y ∶ A) → x ≡A y → f(x) ≡B f(y)

which further satisfies cong(f, x, x, refl) = refl ∶ f(x) ≡B f(x).
1At the time of writing, it is an open question if Homotopy Type Theory is a well-behaved theory or

not.

25

2. Martin-Löf Type Theory

Proof. Given f , x, y and p ∶ x ≡A y, apply the substitution principle for the identity type
with motive P (x′) ∶= f(x) ≡B f(x′) to p. We need a term of type P (x) = f(x) ≡B f(x),
for which clearly refl suffices. Hence we can define

congA,B(f, x, y, p) ∶= subst(λ(x′ ∶A). f(x) ≡B f(x′), p, refl)

and we have

congA,B(f, x, y, refl) = subst(λ(x′ ∶A). f(x) ≡B f(x′), refl, refl) = refl .

We will usually suppress the types A and B and the arguments x and y to congA,B ,
as they can be inferred from the type of f and p ∶ x ≡A y respectively.

Lemma 2.21 For all A ∶ Set, B ∶ A→ Set and C ∶ Set, there is a term

cong2 ∶ (f ∶ (x ∶ A) → Bx→ C) → (x ∶ A) → (y ∶ A) → (u ∶ B(x)) → (v ∶ B(y)) →
(p ∶ x ≡A y) → (q ∶ subst(B,p, u) ≡B(y) v) → f(x,u) ≡C f(y, v)

such that cong2(f, x, x, u, u, refl, refl) = refl ∶ f(x,u) ≡C f(x,u).

Proof. Given f , x, y, u, v, p and q, apply the elimination principle for the identity type
with motive

P (x′, y′, p′) ∶=
(u′ ∶ B(x′)) → (v′ ∶ B(y′)) → subst(B,p′, u′) ≡B(y′) v

′ → f(x′, u′) ≡C f(y′, v′) .

We need to give a term of type P (x,x, refl), i.e. of type

(u′ ∶ B(x)) → (v′ ∶ B(x)) → u′ ≡B(x) v
′ → f(x,u′) ≡C f(x, v′) .

But that is exactly the type of congB(x),C(f(x)) from Lemma 2.20. Furthermore,

cong2(f, x, x, u, u, refl, refl) = congB(x),C(f(x), u, u, refl) = refl .

In particular, if we choose f = ⟨−,−⟩ ∶ (x ∶ A) → B(x) → (Σx ∶ A)B(x), Lemma 2.21
gives us a way to deconstruct a goal of equality at a Σ type; there is a term

≡−pair ∶ (p ∶ x ≡A y) → subst(B,p, u) ≡B(y) v → ⟨x,u⟩ ≡(Σx∶A)B(x) ⟨y, v⟩

such that ≡−pair(x,x, u, u, refl, refl) = refl. On the other hand, if we have such a term,
we can also define cong2:

Proposition 2.22 The terms cong2 and ≡−pair are interderivable.

Proof. We have already seen how ≡−pair can be defined as ≡−pair ∶= cong2(⟨−,−⟩). If
we have ≡−pair, we can construct cong2(f) by packing up the arguments to f in a Σ
type and applying the non-dependent cong from Lemma 2.20: we define

cong2(f, x, y, u, v, p, q) ∶= cong(λw. f(fst(w), snd(w)), ⟨x,u⟩, ⟨y, v⟩, ≡−pair(p, q)) .

26

2.1. An intuitionistic theory of types

Since cong is defined in terms of subst, not the general elimination rule elim≡, also
cong2 can be defined using subst and ≡−pair only. This is important in case we want to
use cong2 in the framework of Observational Type Theory, where the general elim≡ is
not available (≡−pair, on the other hand, is more or less the definition of equality of
dependent pairs in Observational Type Theory).

2.1.7 Propositional types

We call a type propositional if it has at most one inhabitant, up to definitional equality.
Formally, the type A is propositional if the following rule is admissible:

x, y ∶ A
x = y ∶ A

This can be compared to the concept of a mere proposition or h-proposition in Homo-
topy Type Theory [The Univalent Foundations Program, 2013]. The type A is a mere
proposition if

(x ∶ A) → (y ∶ A) → x ≡A y

is inhabited. In other words, a mere proposition is a type with at most one inhabitant
up to propositional equality. Thus, this property can be internalised in Type Theory, in
contrast to the property of being propositional, which lives one level higher. Note that
in extensional type theory, a type is propositional if and only if it is an mere proposition
by the equality reflection rule. We will not pursue this connection further.

Proposition 2.23

(i) The unit type 1 is propositional.

(ii) In extensional Type Theory, the identity type x ≡A y is propositional.

(iii) Let A,B ∶ Set. If B is propositional, then so is A→ B.

(iv) Let A ∶ Set and B ∶ A → Set. If A is propositional, and B(x) is propositional for
each x ∶ A, then both (Σx ∶ A)B(x) and (x ∶ A) → B(x) are propositional.

Proof. This all follows from η-rules for the corresponding types, and is straightforward,
except possibly the function types in items (iii) and (iv). Let f, g ∶ A→ B. By the η-rules
for functions, f = λ(x ∶A). f(x) and g = λ(y ∶A). g(y) for fresh variables x and y. But B
is propositional, and f(x), g(y) ∶ B, so f(x) = g(y). Hence by the ξ-rule,

f = λ(x ∶A). f(x) = λ(y ∶A). g(y) = g .

In item (iv), we must also ask that A is propositional, so that x = y and thus B(x) =
B(y).

27

2. Martin-Löf Type Theory

Note that the empty type 0 is not propositional, since we have no rule that says
that two variables x, y ∶ 0 are definitionally equal. In the same way, we cannot expect
(x ∶ A) → B(x) to be propositional for all propositional B(x) if A is non-propositional,
even if this seems semantically justified. An alternative, used by Altenkirch [1999] to
build a model of extensional Type Theory in an intensional setting, is to introduce a
subuniverse Prop of propositional types, together with a “proof-irrelevance” rule

A ∶ Prop x, y ∶ A
x = y ∶ A (proof-irr)

We can safely add 0 ∶ Prop and (Πx ∶ A)B(x) ∶ Prop for A ∶ Set and B ∶ A→ Prop, since
these types will be propositional for instance in the standard set-theoretical model (see
Section 5.1). In general, we could consider to at least add the class of Harrop formulas
from first-order predicate logic [Harrop, 1960; Troelstra, 1973] to Prop. In particular,
this includes the propositional types from Proposition 2.23, which will be propositional
in all models. Altenkirch proves that the addition of a universe of propositional types
does not destroy any nice properties of the theory; it is still decidable, consistent and
adequate.

We will find no need to introduce such a universe Prop. Instead, we will mostly
be interested in propositional types as a means to improve notation and readability,
by introducing “a poor man’s subset types”: if P (x) is propositional, we will write
{x ∶ A ∣ P (x)} for the dependent sum Σx ∶ A.P (x), and treat y ∶ {x ∶ A ∣ P (x)} as
fst y. If we need to give a term of type {x ∶ A ∣ P (x)}, we will simply give a term
y ∶ A and then separately check that there is a term q ∶ P (y) instead of giving the pair
⟨y, q⟩ ∶ {x ∶ A ∣ P (x)}. Since P (y) is propositional, any q is as good as any other (they
are all the same!), and there is no danger of confusion.

Salvesen and Smith [1988] studied the notion of proper subset types {x ∶ A ∣ P (x)}
in both intensional and extensional type theory. They find that the notion is hard to
use in intensional type theory, but usable for ¬¬-stable types P 2 in extensional type
theory. In particular, all Harrop formulas are ¬¬-stable, which supports our modest
use of subset types in this thesis.

2.2 The dependently typed programming language and proof
assistant Agda

Agda [Norell, 2007] is a dependently typed programming language, and, through the
Curry-Howard isomorphism, also a proof assistant. The meta-theory of Agda is not
very well understood – indeed, one goal of this thesis is to justify the data types that
Agda permits – but Agda implements at least Martin-Löf Type Theory (in a Logical
Framework formulation) with a tower of universes à la Russel Set0 ∶ Set1 ∶ Set2 . . .
and inductive-recursive and inductive-inductive definitions. Section 7.1 is written
completely in Agda, and Appendix A contains Agda formalisations of other parts of

2That is, types P ∶ A→ Set for which (∀x ∶ A)(¬¬P (x) → P (x)) is derivable.

28

2.2. The dependently typed programming language and proof assistant Agda

the thesis, but knowledge of Agda is not a prerequisite for understanding this thesis.
We quickly mention some features of Agda, and how we deal with similar problems in
the text:

• Dependent function types are written (x : A)→ B x. Agda also supports implicit
arguments, written {x : A} → B x, i.e. the argument x : A does not need to be
specified when the function is applied. This is a very useful feature, but sometimes
already the types can be quite cluttered and hard to read, even if the arguments
are implicit. In this thesis, we will trust that the reader is able to fill in implicit
arguments herself without declaring them as such first – a luxury an actual
computer implementation of course cannot afford.

• Data types are declared in Agda using the data keyword, for instance

data N : Set where
zero : N
suc : N → N

In this thesis, we will not introduce many data types “by hand”; most data types
will be represented by codes in some universe. In an actual implementation,
the user could of course be allowed to write data declarations which are then
desugared to the underlying codes [Dagand and McBride, 2013].

• Mutual definitions can be introduced by first giving the type of all objects to be
defined, then later their definitions, without types:

data Even : N → Set
data Odd : N → Set

data Even where
ez : Even zero
o+1 : {n : N} → Odd n → Even (suc n)

data Odd where
e+1 : {n : N} → Even n → Odd (suc n)

This way, both inductive-recursive and inductive-inductive definitions are sup-
ported in Agda.

• Agda supports dependent pattern matching [Coquand, 1992], instead of using
the elimination rules directly. A termination checker checks that all recursive
calls are on structurally decreasing arguments. For instance, Agda accepts the
following proof that every natural number is either even or odd:

evenOdd : (n : N) → Even n + Odd n

29

2. Martin-Löf Type Theory

evenOdd zero = inl ez
evenOdd (suc n) = [inr ○ e+1 , inl ○ o+1] (evenOdd n)

We will often use pattern matching notation as an abbreviation for the correspond-
ing eliminator. We emphasise that this is a harmless shorthand, and that we are
not using the general reduction of pattern matching to eliminators plus Streicher’s
Axiom K [Goguen et al., 2006].

2.3 Category theory in Type Theory
We will use well-known concepts from category theory without comment. A good
introduction can be found in Mac Lane [1998]. However, a few words should perhaps
be said about meta-theoretical issues. We are often working in category theory inside
Type Theory. When doing so, we usually work in extensional Type Theory. With a little
bit of more care, it should be possible to follow Huet and Saı̈bi [1998] and work with
setoids instead (see also Wilander [2012]).

We are also purposefully blurring the distinction between the category of sets and
the category generated from the objects of type Set in the Type Theory described in this
chapter – who are we to say what the “real” category of sets look like? We only have
to be careful that it still has the properties we expect, e.g. that it is complete, locally
Cartesian closed, well-pointed, . . . (see also Palmgren [2012]).

30

Chapter3

A finite axiomatisation of
inductive-inductive definitions

Contents
3.1 Examples of inductive-inductive definitions 31
3.2 A finite axiomatisation . 35
3.3 Summary and discussion . 57

We start by giving some informal examples of inductive-inductive definitions that
will also serve as running examples for the rest of the chapter. We then present a
finite axiomatisation of a type theory with inductive-inductive definitions, including
formation, introduction and elimination rules.

Parts of this chapter have previously been published in the proceedings of CSL
2010 [Nordvall Forsberg and Setzer, 2010] and the Schwichtenberg Festschrift [Nord-
vall Forsberg and Setzer, 2012].

3.1 Examples of inductive-inductive definitions

In this section, we give some examples of inductive-inductive definitions, starting with
the perhaps most important one:

Example 3.1 (Contexts and types) Danielsson [2007] and Chapman [2009] model the
syntax of dependent type theory in the theory itself by inductively defining contexts,
types (in a given context) and terms (of a given type). To see the inductive-inductive
nature of the construction, it is enough to concentrate on contexts and types.

Informally, we have an empty context ε, and if we have any context Γ and a valid
type σ in that context, then we can extend the context with a fresh variable x ∶ σ to get
a new context Γ, x ∶ σ. This is the only way contexts are formed. We end up with the
following inductive definition of the set of contexts (with Γ▷ σ meaning Γ, x ∶ σ since

31

3. A finite axiomatisation of inductive-inductive definitions

we are using de Bruijn indices):

ε ∶ Ctxt

Γ ∶ Ctxt σ ∶ Ty(Γ)
Γ▷ σ ∶ Ctxt

Moving on to types, we have a base type ι (valid in any context) and dependent
function types: if σ is a type in context Γ, and τ is a type in Γ, x ∶ σ (x is the variable
from the domain), then Π(σ, τ) is a type in the original context. This leads us to the
following inductive definition of Ty ∶ Ctxt→ Set:

Γ ∶ Ctxt
ιΓ ∶ Ty(Γ)

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ▷ σ)
ΠΓ(σ, τ) ∶ Ty(Γ)

Note that the definition of Ctxt refers to Ty, so both sets have to be defined simul-
taneously. Note also how the introduction rule for Π explicitly focuses on a specific
constructor in the index of the type of τ . ∎

Often, one wishes to define a set A where all elements of A satisfy some property
P ∶ A → Set. If P is inductively defined, one can define A and P simultaneously and
achieve that every element of A satisfies P by construction. One example of such a data
type is the type of sorted lists:

Example 3.2 (Sorted lists) Let us define a data type consisting of sorted lists (of nat-
ural numbers, say). With induction-induction, we can simultaneously define the set
SortedList of sorted lists and the predicate ≤L∶ (N × SortedList) → Set with n ≤L ` true if
n is less than or equal to every element of `.

The empty list is certainly sorted, and if we have a proof p that n is less than or
equal to every element of the list `, we can put n in front of ` to get a new sorted list
cons(n, `, p). Translated into introduction rules, this becomes:

nil ∶ SortedList

n ∶ N ` ∶ SortedList p ∶ n ≤L `

cons(n, `, p) ∶ SortedList

For ≤L, we have that every m ∶ N is trivially smaller than every element of the empty
list, and if m ≤ n and inductively m ≤L `, then m ≤L cons(n, `, p):

trivm ∶m ≤L nil

q ∶m ≤ n pm,` ∶m ≤L `

≪ q, pm,` ≫ ∶m ≤L cons(n, `, p)

This makes sense even if the order ≤ is not transitive. If it is (as the standard order
on the natural numbers is, for example), the argument pm,` ∶ m ≤L ` can be dropped
from the constructor ≪ ⋅ ≫, since we already have q ∶ m ≤ n and p ∶ n ≤L `, hence by
transitivity we must have m ≤L `.

Of course, there are also many alternative ways to define such a data type using ordi-
nary induction (or using e.g. induction-recursion, similarly to C. Coquand’s definition
of fresh lists as reported by Dybjer [2000]). ∎

32

3.1. Examples of inductive-inductive definitions

Finally, let us consider an example of more mathematical flavour.

Example 3.3 Recall that an order < on a set A (i.e. a binary relation < ∶ A → A → Set)
is called dense if there is a point between any two comparable points, i.e. if x < y then
there exists a z in A such that x < z < y. The standard order on the rationals is dense,
but the standard order on the integers is not.

Given an ordered set (A,<), the dense completion (A∗,<∗) of (A,<) is the “least”
ordered set in which (A,<) embeds: There is an order-preserving map η ∶ (A,<) →
(A∗,<∗), and any order-preserving f ∶ (A,<) → (B,≺), where (B,≺) is a densely ordered
set, factors through η in an order-preserving way:

(A,<) η //

f %%

(A∗,<∗)

f
��

(B,≺)

The dense completion of (A,<) can be defined as an inductive-inductive definition.
An ordinary inductive definition is not enough, since we need to define the set A∗

simultaneously with the order relation <∗∶ A→ A→ Set.
The first constructor of A∗ embeds A, while the second adds midpoints:

a ∶ A
η(a) ∶ A∗

x, y ∶ A∗ p ∶ x <∗ y
mid(x, y, p) ∶ A∗

The order relation <∗ is designed to make η order-preserving, and put mid(x, y,)
between x and y.

a, b ∶ A q ∶ a < b
η<(a, b, q) ∶ η(a) <∗ η(b)

x, y ∶ A∗ p ∶ x <∗ y
mid<R(x, y, p) ∶ x <∗ mid(x, y, p)

x, y ∶ A∗ p ∶ x <∗ y
mid<L(x, y, p) ∶ mid(x, y, p) <∗ y

Notice that this would have been quite hard to express as a recursive definition, as we
are not giving c(x) <∗ d(y) for all constructors c and d. This concludes the definition of
(A∗,<∗). It is clear that <∗ is dense:

λ(x ∶A∗). λ(y ∶A∗). λ(p ∶x <∗ y). ⟨mid(x, y, p), ⟨mid<R(x, y, p),mid<L(x, y, p)⟩⟩

is a proof of
(x, y ∶ A∗) → x <∗ y → (Σz ∶ A∗)(x < z × z < y) .

Furthermore, η is an order-preserving embedding of (A,<) into (A∗,<∗).
We can use the elimination rules for (A∗,<∗) to factor f ∶ (A,<) → (B,≺) (with ≺

dense, witnessed by dense≺, say) through η. Let us keep the notation informal, in a
pattern-matching style, for now. We want to define f ∶ A∗ → B, and prove that it is

33

3. A finite axiomatisation of inductive-inductive definitions

order-preserving. As is typical for inductive-inductive definitions, we need to do this
at the same time. Thus, we simultaneously define

f ∶ A∗ → B

f
< ∶ (x, y ∶ A∗) → x <∗ y → f(x) ≺ f(y)

For z of the form z = η(a), we do not have any choice in how to define f ; if we want f
to factor through it, we must have

f(η(a)) = f(a)

For z of the form z = mid(x, y, p), we know the value of f(x) and f(y) by the induction
hypothesis, and we might hope to use the denseness of ≺ to define f(mid(x, y, p)); we
have a proof dense≺ of

dense≺ ∶ (x, y ∶ B) → x ≺ y → (Σz ∶ B)(x ≺ z × z ≺ y)

To use this, we need a proof that f(x) ≺ f(y). But we have a proof p ∶ x <∗ y, so since
we are simultaneously proving that f is order-preserving, we can define

f(mid(x, y, p)) = fst(dense≺(f(x), f(y), f
<(x, y, p))) .

It remains to define f< ∶ (x, y ∶ A∗) → x <∗ y → f(x) ≺ f(y), which we are also
allowed to do by structural recursion, this time over x <∗ y. We have a case for each
constructor, and they can be taken care of in the following way, where f< ∶ (x, y ∶ A) →
x < y → f(x) ≺ f(y) is the proof that f is order-preserving:

f
<(, , η<(a, b, q)) = f<(a, b, q)

f
<(, ,mid<R(x, y, p)) = fst(snd(dense≺(f(x), f(y), f

<(x, y, p))))
f
<(, ,mid<L(y, y, p)) = snd(snd(dense≺(f(x), f(y), f

<(x, y, p))))

We are using a variant of the (in Type Theory provable) Axiom of Choice when we
extract a witness from dense≺. It should also be remarked that f is not unique, as one
might perhaps expect. A counterexample is given by A = {a < b} and B consisting
of a < b, together with two incomparable chains a < . . . < c−1 < c0 < c1 < . . . < b and
a < . . . < d−1 < d0 < d1 < . . . < b between them. The dense completion A∗ will consist
of one dense chain η(a) < . . . < e−1 < e0 < e1 < . . . < η(b), but now there are two order-
preserving choices for the extension id ∶ A∗ → B of the function id ∶ A ↪ B: we can
either map ei to ci or to di. ∎

Note that these examples strictly speaking refer to extensions of inductive-inductive
definitions as presented in this chapter. Example 3.1 in full would be an example of
defining a telescope A ∶ Set, B ∶ A → Set, C ∶ (x ∶ A) → B(x) → Set, . . . inductive-
inductively. In Example 3.2, A ∶ Set and B ∶ (A × I) → Set for some previously defined
set I is defined, and Example 3.3 gives an inductive-inductive definition of A ∶ Set,
B ∶ (A×A) → Set. In Section 6.2, we explore extensions which capture all these examples
in full. For pedagogical reasons, we first treat the simpler case A ∶ Set, B ∶ A→ Set.

34

3.2. A finite axiomatisation

3.2 A finite axiomatisation
We now give a finite axiomatisation of a type theory with inductive-inductive definitions.
This axiomatisation has been published in Nordvall Forsberg and Setzer [2012]. It differs
slightly from the axiomatisation given in Nordvall Forsberg and Setzer [2010], which
was not finite. However, the definable sets should be the same for both axiomatisations.

The main idea, following Dybjer and Setzer’s axiomatisation of inductive-recursive
definitions [Dybjer and Setzer, 1999], is to construct a universe consisting of codes for
inductive-inductive definitions, together with a decoding function, which maps a code
ϕ to the domain of the constructor for the inductively defined set represented by ϕ.
We will actually use two universes: one to describe the constructors for the index set
A, and one to describe the constructors of the second component B ∶ A→ Set. Just as
the constructors for B ∶ A→ Set can depend on the constructors for the first set A, the
codes in the universe SP0

B(γ) of codes for the second component will depend on codes
γ ∶ SP0

A for the first component.

3.2.1 Dissecting an inductive-inductive definition

We want to formalise and internalise an inductive-inductive definition given by con-
structors

introA ∶ ΦA(A,B) → A

and
introB ∶ (x ∶ ΦB(A,B, introA)) → B(θ(x))

for some ΦA(A,B) ∶ Set, ΦB(A,B, introA) ∶ Set and θ ∶ ΦB(A,B, introA) → A. Here,
θ(x) is the index of introB(x), i.e. the element a ∶ A such that introB(x) ∶ B(a).

Not all expressions ΦA and ΦB give rise to acceptable inductive-inductive definitions.
It is well known, for example, that the theory easily becomes inconsistent if A or B
occur in negative positions in ΦA or ΦB respectively. Thus, we restrict our attention to
a class of strictly positive functors.

These are based on the following analysis of what kind of premises can occur in
a definition. A premise is either inductive or non-inductive. A non-inductive premise
consists of a previously constructed set K, on which later premises can depend. An
inductive premise is inductive in A or B. If it is inductive in A, it is of the form
K → A for some previously constructed set K. Premises inductive in B are of the form
(x ∶K) → B(i(x)) for some i ∶K → A.

If K = 1, we have the special case of a single inductive premise. In the case of
B-inductive arguments, the choice of i ∶ 1→ A is then just a choice of a single element
a = i(⋆) ∶ A so that the premise is of the form B(a). This is called an ordinary inductive
premise, with the general case called a generalised inductive premise.

3.2.2 Dybjer and Setzer’s axiomatisation of inductive-recursive definitions

To get used to the style of axiomatisation we are going to use, and the idea of us-
ing universes of codes to represent inductively defined types, we recall Dybjer and

35

3. A finite axiomatisation of inductive-inductive definitions

Setzer’s [1999] axiomatisation of a type theory with inductive-recursive definitions.
Even though inductive-recursive definitions are proof-theoretically much stronger than
inductive-inductive definitions (see Section 5.3 for a partial result), they admit a simpler
axiomatisation. This is not as paradoxical as it sounds; it is simply the case that we can
give a more uniform and straight-forward description of the universe of codes used to
describe inductive-recursive types. The introduction and elimination rules, which is
where the formal power comes from, are equally simple to state for both theories, but
have very different consequences.

An inductive-recursive definition consists of an inductively defined set U , and a
recursively defined function T ∶ U → D for some (possibly large) type D. That U is
inductively defined means that it is given by a constructor

intro ∶ Φ(U,T) → U

and that T is recursively defined means that the value of T on a canonical element
intro(x⃗) of U is given in terms of the value of T on the subterms of x⃗.

Dybjer and Setzer’s idea was to describe the domain Φ(U,T) of intro – but for
arbitrary U ∶ Set, T ∶ U →D. This domain is basically a list (telescope) of arguments, as
in Section 3.2.1, where later arguments can depend on earlier ones. If the argument is
non-inductive, this dependency is direct, whereas for an inductive argument u ∶ U , we
can only depend on T (u) ∶ D. This intuitively makes sense, as we do know what the
elements of D are, but not the elements of U – we are in the middle of the process of
defining them!

Dybjer and Setzer made the above observations formal by defining a large type IRD
of codes for Φ(U,T), together with decoding functions

ArgIR(γ) ∶ (U ∶ Set) → (T ∶ U →D) → Set

FunIR(γ) ∶ (U ∶ Set) → (T ∶ U →D) → ArgIR(γ,U,T) →D

for each code γ ∶ IRD. Here ArgIR(γ,U,T) should be thought of as the domain of the
constructor introγ ∶ ArgIR(γ,U,T) → U , and FunIR(γ,U,T, x⃗) as the value of T (introγ(x⃗)).
The type IRD needs to be large, since it is referring to to arbitrary sets. The codes in
IRD, and their decodings, are inductively defined by the following clauses:

The code ι(d) represents a trivial constructor introι(d) ∶ 1→ U (a base case):

d ∶D
ι(d) ∶ IRD ArgIR(ι(d), U, T) = 1

The code σ(A,f) represents a noninductive argument a ∶ A, followed by the rest
of the arguments, which are represented by f(a). The name σ stands for the Σ type,
which is used in its decoding:

A ∶ Set f ∶ A→ IRD

σ(A,f) ∶ IRD ArgIR(σ(A,f), U, T) = (Σa ∶ A)ArgIR(f(a), U, T)

Note that the remaining arguments f(a) can depend on a.

36

3.2. A finite axiomatisation

The code δ(A,F) represents an inductive argument g ∶ A→ U , followed by the rest
of the arguments, which are represented by F (T ○g). The name δ stands for “dependent
Σ”:

A ∶ Set F ∶ (A→D) → IRD

δ(A,F) ∶ IRD

ArgIR(δ(A,F), U, T) = (Σg ∶ A→ U)ArgIR(F (T ○ g), U, T)

Note that the rest of the arguments, which are represented by F (T ○ g), do not depend
on the argument g ∶ A→ U directly, but only on T ○ g.1

For completeness, we also give the definition of FunIR, although the details will not
interest us very much until Section 6.1.

FunIR(ι(d), U, T,⋆) = d
FunIR(σ(A,f), U, T, ⟨a, x⟩) = FunIR(f(a), U, T, x)
FunIR(δ(A,F), U, T, ⟨g, x⟩) = FunIR(F (T ○ g), U, T, x)

The principle of inductive-recursive definitions now states that there is a family
(Uγ , Tγ) “closed under” ArgIR(γ) and FunIR(γ) for each code γ ∶ IRD. Formally, this is
expressed using the following rules:

Axioms 3.4 (Rules for inductive-recursive definitions) Formation rules:

D type γ ∶ IRD

Uγ ∶ Set

D type γ ∶ IRD

Tγ ∶ Uγ → Set

For the rest of the rules, we suppress the premises D type and γ ∶ IRD.
Introduction rule for Uγ :

a ∶ ArgIR(γ,Uγ , Tγ)
introγ(a) ∶ Uγ

Computation rule for Tγ :

Tγ(introγ(a)) = FunIR(γ,Uγ , Tγ , a) ∎

We do not assume that these axioms are part of our type theory in general. Let us
now look at an example of how the theory is meant to be used.

Example 3.5 (A universe closed under W-types) The code

γW ∶= δ(1, λX. δ(X(⋆), λY. ι(W(x ∶X(⋆))Y (x))))

describes a universe (U,T) closed under W-types. If we decode it, we get

ArgIR(γW, U, T) = (Σa ∶ 1→ U)(Σb ∶ T (a(⋆)) → U)1 ≅ (Σa ∶ U)(T (a) → U)
1For inductive-inductive definitions, we have no recursively defined function T ∶ U →D, and hence

no such general dependency on inductive arguments.

37

3. A finite axiomatisation of inductive-inductive definitions

so that the constructor of the universe has type isomorphic to

introγW
∶ (a ∶ U) → (b ∶ T (a) → U) → U

after uncurrying, and we have

T (introγW
(a, b)) = W(x ∶ T (a))T (b(x)) .

This shows that inductive-recursive definitions can be used for proof-theoretically
strong constructions [Setzer, 1998]. Dybjer and Setzer go considerable further and
show that e.g. Palmgren’s superuniverse [Palmgren, 1998] and Setzer’s external Mahlo
universe [Setzer, 2008] are subsumed by the theory of (indexed) inductive-recursive
definitions. ∎

When it comes to elimination rules for inductive-recursive definitions, Martin-Löf
[1972] writes about a universe V :

It is not natural although possible to add the principle of (transfinite) in-
duction over V , expressing the idea that V is the least type which is closed
with respect to the above inductive clauses, because we want to keep our
universe open so as to be free to throw new types into it or require it to be
closed with respect to new type forming operations.

These considerations are not so important with the principle of inductive-recursive
definitions at our disposal, as we can just construct a second universe, should we need
it to contain more types. Furthermore, if we use inductive-recursive definitions to
construct structures that are not universes (e.g. balanced binary trees [Ek et al., 2009]),
it is crucial to have an elimination principle for those structures. Hence Dybjer and
Setzer also define elimination rules for inductive-recursively defined sets. They define
a set of induction hypothesis2 for a given element x ∶ ArgIR(γ,U,T)

γ ∶ IRD
U ∶ Set

T ∶ U →D P ∶ U → Set x ∶ ArgIR(γ,U,T)
IHIR(γ,U,T,P, x) ∶ Set

by induction over γ, together with a function mapIH which takes care of the recursive
calls:

. . . g ∶ (x ∶ U) → P (x) x ∶ ArgIR(γ,U,T)
mapIH(γ,U,T,P, g, x) ∶ IHIR(γ,U,T, p, x)

Given these operations, we can define the elimination rule for Uγ to be

x ∶ Uγ ⊢ P (x) type g ∶ (x ∶ ArgIR(γ,Uγ , Tγ)) → IHIR(γ,Uγ , Tγ , P, x) → P (introγ(x)) u ∶ Uγ
elimγ(P, g, u) ∶ P (x)

2Actually, since the codomain D of the recursive function T can be large, it makes sense for the
elimination rules to support large elimination as well. This forces also the collection of induction hypothesis
to be large, and complicates the construction slightly [Dybjer and Setzer, 2006, Section 5.4]. For our
purposes, small elimination will be enough.

38

3.2. A finite axiomatisation

with computation rule

elimγ(P, g, introγ(x)) = g(x,mapIH(γ,Uγ , Tγ , P, elimγ(P, g), x) ∶ P (introγ(x)) .

Another option, explored in Dybjer and Setzer [2003], and whose analogue for
inductive-inductive definitions we will pursue in Chapter 4, starts with the observation
that ArgIR(γ) together with FunIR(γ) can be extended to an endofunctor on a category
FamD:

Definition 3.6 Let D be a category. The category FamD of families of objects of D has as
objects pairs (A,B), where A is a set and B ∶ A→ D is an A-indexed family of objects of
D. A morphism from (A,B) to (A′,B′) is a pair (f, g) consisting of a function f ∶ A→ A′

and a natural transformation g ∶ B → B′ ○ f , i.e. g ∶ (x ∶ A) → B(x) → B′(f(x)). ∎

Given a (possibly large) type D, we can regard it as a discrete category. Note that
in this case, a morphism from (A,B) to (A′,B′) is just a function f ∶ A→ A′ such that
B = B′ ○ f ∶ A→D since the only morphisms in the category D are identity morphisms.
The operations ArgIR(γ) and FunIR(γ) gives rise to an endofunctor on FamD which
maps (U,T) to the family (ArgIR(γ,U,T),FunIR(γ,U,T)). To extend this to an action
on morphisms, Dybjer and Setzer use extensional equality in an essential way.

Now that every code γ in IRD gives rise to a functor, we can use the machinery of
initial algebra semantics [Goguen et al., 1977] to express elimination rules forUγ . Dybjer
and Setzer [2003] show that initiality of (Uγ , Tγ , introγ) is equivalent to the elimination
rules we have formulated above.

3.2.3 The axiomatisation of inductive-inductive definitions

We now give the formal rules for inductive-inductive definitions. These consists of a set
of rules for the universe SPA of descriptions of the setA and its decoding function ArgA,
a set of rules for the universe SPB and its decoding function ArgB, and formation and
introduction rules for A ∶ Set, B ∶ A → Set defined inductive-inductively by a pair of
codes γA ∶ SPA, γB ∶ SPB(γA). The elimination rules will be dealt with in Section 3.2.5.
The concepts involved in the axiomatisation are summarised in Table 3.1.

We first define the universe SPA of codes for A ∶ Set and its decoding function ArgA

in Section 3.2.3.1. Important will be the concept of “referable” elements in the process
of constructing a code γA ∶ SPA. For instance, after an inductive argument a ∶X , all later
arguments can refer to a. We collect all such referable elements in a set Xref , together
with a function repX ∶Xref →X which makes Xref a “subset” of X .

When we get to codes for the second family B ∶ A→ Set, we see that there is a slight
complication: since we want the constructor for B to be able to refer to the constructor
introA ∶ ArgA(γA,A,B) → A, we must also make it possible to refer to elements of the
form introA(x⃗) or even introA(introA(x⃗), y⃗) etc. The necessary machinery is developed
in Section 3.2.3.2, where a set A-Term(γA,Xref , Yref), consisting of terms constructed
from Xref , Yref and introA, is defined. We also define a function repA which makes
A-Term(γA,Xref , Yref) a “subset” of X .

39

3. A finite axiomatisation of inductive-inductive definitions

Table 3.1: Concepts involved in the axiomatisation.

Name Meaning Section

SPA universe of codes γA for first set A 3.2.3.1
ArgA decoding function
Xref current referable terms from first set
repX function witnessing Xref ⊆X
Yref current referable terms from second family 3.2.3.2
repindex, repY functions witnessing (x ∶ Yref) ⊆ Y (repindex(x))
A-Term terms built from referable terms and constructor
repA function witnessing A-Term(γ,Xref , Yref) ⊆X
SPB(γA) universe of codes γB for second family B ∶ A→ Set 3.2.3.3
ArgB decoding function
IndexB targeted index function
AγA,γB

, BγA,γB
the inductive-inductively defined family 3.2.3.4

introA, introB constructors

In Section 3.2.3.3, we then make use of the machinery developed in Section 3.2.3.2 to
define a universe SPB of codes for B ∶ A→ Set, together with a decoding function ArgB.
We also define a function IndexB which we intend to pick out the index of the constructed
element, i.e. given x ∶ ArgB(γB,A,B), the function IndexB picks out a = IndexB(x) ∶ A
such that introB(x) ∶ B(a).

Finally, in Section 3.2.3.4, the formation and introduction rules are introduced.

3.2.3.1 The universe SP0
A of descriptions of A

We introduce the universe of codes for the index set with the formation rule

Xref ∶ Set

SPA(Xref) type

The set Xref should be thought of as the elements of A that we can refer to in the code
that we are defining. To start with, we cannot refer to any elements in A, and so we
define SP0

A ∶= SPA(0). After introducing an inductive argument a ∶ A, we can refer to a
in later arguments, so thatXref will be extended to include a as well for the construction
of the rest of the code.

The introduction rules for SPA reflects the informal discussion in Section 3.2.1. The
rules are as follows (we suppress the global premise Xref ∶ Set):

The code nil represents a trivial constructor c ∶ 1→ A (a base case):

nil ∶ SPA(Xref)

40

3.2. A finite axiomatisation

The code non-ind(K,γ) represents a non-inductive argument x ∶K, with the rest of
the arguments given by γ(x):

K ∶ Set γ ∶K → SPA(Xref)
non-ind(K,γ) ∶ SPA(Xref)

The code A-ind(K,γ) represents an inductive argument of type K → A, with the
rest of the arguments given by γ:

K ∶ Set γ ∶ SPA(Xref +K)
A-ind(K,γ) ∶ SPA(Xref)

Notice that γ ∶ SPA(Xref + K), so that the remaining arguments can refer to more
elements in A (namely those introduced by the inductive argument).

Finally, the code B-ind(K,hindex, γ) represents an inductive argument of type (x ∶
K) → B(i(x)), where the index i(x) is determined by hindex, and the rest of the argu-
ments are given by γ:

K ∶ Set hindex ∶K →Xref γ ∶ SPA(Xref)
B-ind(K,hindex, γ) ∶ SPA(Xref)

Example 3.7 Returning to the contexts and types of Example 3.1, the constructor

▷ ∶ ((ΣΓ ∶ Ctxt)Ty(Γ)) → Ctxt

is represented by the code

γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶1). Γ̂,nil)) ,

where Γ̂ = inr(⋆) is the representation of Γ in Xref = 0 + 1. ∎

We now define the decoding function ArgA, which maps a code to the domain of the
constructor it represents. In addition to a set Xref and a code γ ∶ SPA(Xref), ArgA will
take a set X and a family Y ∶X → Set as arguments to use as A and B in the inductive
arguments. These will later be instantiated by the sets defined inductive-inductively
(“tying the knot”). We also require a function repX ∶ Xref → X which we think of as
mapping a “referable” element to the element it represents in X . Thus, via repX, we
can see Xref as a “subset” of X . ArgA has the following formation rule:

Xref ∶ Set γ ∶ SPA(Xref) X ∶ Set Y ∶X → Set repX ∶Xref →X

ArgA(Xref , γ,X,Y, repX) ∶ Set

Notice that if γ ∶ SP0
A, i.e. if Xref = 0, then we can choose repX = !X ∶ 0 → X (indeed,

extensionally, this is the only choice), so that we can define

Arg0
A ∶ SP0

A → (X ∶ Set) → (Y ∶X → Set) → Set

by Arg0
A(γ,X,Y) = ArgA(0, γ,X,Y, !X).

41

3. A finite axiomatisation of inductive-inductive definitions

The definition of ArgA follows the informal description of what the different codes
represent above3:

ArgA(,nil, , ,) = 1

ArgA(,non-ind(K,γ), , ,) = (Σx ∶K)ArgA(, γ(x), , ,)
ArgA(Xref ,A-ind(K,γ),X, , repX) =

(Σj ∶K →X)ArgA(Xref +K,γ, , , [repX, j])
ArgA(,B-ind(K,hindex, γ), , Y, repX) =

((x ∶K) → Y ((repX ○ hindex)(x))) ×ArgA(, γ, , ,)

Example 3.8 Recall the code γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶1). inr(⋆),nil)) for the construc-
tor ▷ ∶ ((ΣΓ ∶ Ctxt)Ty(Γ)) → Ctxt. We have

Arg0
A(γ▷,Ctxt,Ty) = (ΣΓ ∶ 1→ Ctxt)(1→ Ty(Γ(⋆))) × 1

which, thanks to the η-rules for 1, Σ and →, is isomorphic to the domain of ▷. ∎

3.2.3.2 Towards descriptions of B

As we have seen in Example 3.1, it is important that the constructor introB for the second
set B ∶ A → Set can refer to the constructor introA for the first set A. This means that
inductive arguments might be of type B(introA(a)) for some a ∶ Arg0

A(γA,A,B) or even
B(introA(. . . introA . . . (a))) for some a ∶ Arg0

A(γA, . . .Arg0
A(γA,A,B) . . . ,B′). Thus, we

need to be able to represent such indices in the descriptions of the constructor introB.
It is no longer enough to only keep track of the referable elementsXref ofX – we need

to be able to refer to elements of B(x) as well, since they could be used as arguments to
introA. How can we represent elements of a family Y (x), where Y ∶X → Set?

• The most direct option is to use another family Y ′
ref ∶Xref → Set. Where y ∶ Y ′

ref(x)
might represent b ∶ Y (a) for some x ∶ Xref representing a ∶ X . However, this
quickly becomes unwieldy, since e.g. enlarging Xref means modifying Y ′

ref as well.

• Instead, we take a more “fibred” approach and represent elements of the family
Y by a set Yref , together with functions repindex ∶ Yref → X and repY ∶ (x ∶ Yref) →
Y (repindex(x)) ; the function repindex gives the index of the represented element,
and repY the actual element. There is no need to factor repindex through Xref and
repX (in fact, it would make things more complicated).

We want to represent elements in Arg0
A(γA,X,Y). We claim that the elements in

Arg0
A(γA,Xref +Yref , [λx.0, λx.1]) are suitable for this purpose. To see this, first observe

that we can define functions
f ∶Xref + Yref →X ,

3For readability, we have replaced arguments which are simply passed on with “ ” in the recursive
call, and likewise on the left hand side if the argument is not used otherwise. This is different from Agda’s
use of “ ”.

42

3.2. A finite axiomatisation

g ∶ (x ∶Xref + Yref) → [λx.0, λx.1](x) → Y (f(x))

by f = [repX, repindex] and g = [λx. !, λx. λ ⋆ . repY(x)]. These are morphisms between
families of sets in the sense of Definition 3.6. Then, we can lift these functions to a
function

Arg0
A(γA, f, g) ∶ Arg0

A(γA,Xref + Yref , [λx.0, λx.1]) → Arg0
A(γA,X,Y)

by observing that Arg0
A(γA) is functorial:

Lemma 3.9 For each γ ∶ SP0
A, Arg0

A(γ) extends to a functor from families of sets to
sets, i.e. given f ∶ X → X ′ and g ∶ (x ∶ X) → Y (x) → Y ′(f(x)), one can define
Arg0

A(γ, f, g) ∶ Arg0
A(γ,X,Y) → Arg0

A(γ,X ′, Y ′).

Remark. In extensional type theory, one can also prove that Arg0
A(γ, f, g) actually is a

functor, i.e. that identities and compositions are preserved, but that will not be needed
for the current development.

Proof. This is straightforward in extensional type theory. In intensional type theory
without propositional identity types, we have to be more careful. We define the function
Arg0

A(γ, f, g) by induction over γ. In order to do this, we need to refer inductively to
the case when Xref is no longer 0. Hence, we need to consider the more general case
where X , Y , X ′, Y ′, f and g have types as above, and Xref , ∶ Set, repX ∶ Xref → X ,
rep′X ∶Xref →X ′. One expects the equality f(repX(x)) = rep′X(x) to hold for all x ∶Xref .
In order to avoid the use of identity types, we state this in a form of Leibniz equality,
specialised to the instance we actually need; we ask also for a term

p ∶ (x ∶Xref) → Y ′(f(repX(x))) → Y ′(rep′X(x)) .

If Xref = 0, we can trivially use p =!λx.Y ′(f(repX(x)))→Y ′(rep′X(x)). We define

ArgA(γ, f, g, p) ∶ ArgA(Xref , γ,X,Y, repX) → ArgA(Xref , γ,X
′, Y ′, rep′X)

by induction over γ:

ArgA(nil, f, g, p,⋆) = ⋆
ArgA(non-ind(K,γ), f, g, p, ⟨k, y⟩) = ⟨k,ArgA(γ(k), f, g, p, y)⟩

ArgA(A-ind(K,γ), f, g, p, ⟨j, y⟩) = ⟨f ○ j,ArgA(γ, f, g, [p, λx. id], y)⟩
ArgA(B-ind(K,hindex, γ), f, g, p, ⟨j, y⟩) =

⟨λk. p(hindex(k), g(repX(hindex(k)), j(k))),ArgA(γ, f, g, p, y)⟩

Notice the use of the specialised Leibniz equality p in the last line. Finally, we can
define Arg0

A(γ, f, g) ∶ Arg0
A(γ,A,B) → Arg0

A(γ,A′,B′) by

Arg0
A(γ, f, g) ∶= ArgA(γ, f, g, !) .

43

3. A finite axiomatisation of inductive-inductive definitions

Recall that we want to use Lemma 3.9 to represent elements in Arg0
A(γA,X,Y) by

elements in Arg0
A(γA,Xref +Yref , [λx.0, λx.1]). We can actually do better, and represent

arbitrarily terms built from elements in X and Y with the use of a constructor introA ∶
Arg0

A(γA,X,Y) →X . For this, define the set A-Term(γA,Xref , Yref) of terms “built from
introA, Xref and Yref” with introduction rules

x ∶Xref

aref(x) ∶ A-Term(γA,Xref , Yref)

x ∶ Yref

bref(x) ∶ A-Term(γA,Xref , Yref)

x ∶ Arg0
A(γA,A-Term(γA,Xref , Yref),B-Term(γA,Xref , Yref))

arg(x) ∶ A-Term(γA,Xref , Yref)

Here, B-Term(γA,Xref , Yref) ∶ A-Term(γA,Xref , Yref) → Set is defined by

B-Term(γA,Xref , Yref , aref(x)) = 0
B-Term(γA,Xref , Yref ,bref(x)) = 1
B-Term(γA,Xref , Yref , arg(x)) = 0

Note that this is formally an inductive-recursive definition. The intuition behind the
definition of B-Term is that all elements of Y we know are represented in Yref , and only
in Yref .

All elements in A-Term(γA,Xref , Yref) represents elements in X , given that we have
a function introA ∶ Arg0

A(γA,X,Y) → X and the elements of Xref and Yref represents
elements of X and Y respectively (i.e. we have repX ∶ Xref → X , repindex ∶ Yref → X
and repY ∶ (x ∶ Yref) → Y (repindex(x))). We think of Xref as containing elements of X
constructed without introA, and of A-Term(γA,Xref , Yref) as containing elements of X
constructed with an arbitrary number of applications of introA (possibly zero). Formally,
we can simultaneously define the following two functions:

γA ∶ SP0
A introA ∶ Arg0

A(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
repA(. . .) ∶ A-Term(γA,Xref , Yref) →X

repB(. . .) ∶ (x ∶ A-Term(γA,Xref , Yref)) → B-Term(γA,Xref , Yref , x) → Y (repA(. . . , x))

The definition of repA is straightforward. The interesting case is arg(x), where we make
use of the constructor introA, the functoriality of Arg0

A and the mutually defined repB:

repA(γA, introA, repX, repindex, repY, aref(x)) = repX(x)
repA(γA, introA, repX, repindex, repY,bref(x)) = repindex(x)
repA(γA, introA, repX, repindex, repY, arg(x)) =

introA(Arg0
A(γA, repA(. . .), repB(. . .), x))

44

3.2. A finite axiomatisation

The simultaneously defined repB is very simple:

repB(γA, introA, repX, repindex, repY, aref(x), y) = !(y)
repB(γA, introA, repX, repindex, repY,bref(x),⋆) = repY(y)
repB(γA, introA, repX, repindex, repY, arg(x), y) = !(y)

Example 3.10 We define some terms in A-Term(γ▷,Xref , Yref), where

γ▷ = A-ind(1,B-ind(1, λ(⋆ ∶1). inr(⋆),nil))

is the code for the constructor

▷ ∶ ((ΣΓ ∶ 1→ A)(1→ B(Γ(⋆))) × 1) → A .

Suppose that we have â ∶Xref with repX(â) = a ∶ A and b̂ ∶ Yref with repindex(b̂) = a and
repY(b̂) = b ∶ B(a). We then have

• aref(â) ∶ A-Term(γ▷,Xref , Yref) with repA(γ▷,▷, . . . , â) = a (so elements from Xref

are terms).

• bref(b̂) ∶ A-Term(γ▷,Xref , Yref) with repA(γ▷,▷, . . . ,bref(b̂)) = a (so elements from
Yref are terms, representing the index of the element in B they represent). Fur-
thermore repB(γ▷,▷, . . . ,bref(b̂),⋆) = b.

• â▷ b ∶= arg(⟨(λ ⋆ .bref(b̂)), ⟨(λ ⋆ .⋆),⋆⟩⟩) ∶ A-Term(γ▷,Xref , Yref) with

repA(γ▷,▷, . . . , â▷ b) = (repindex(b̂)) ▷ (repY(b̂)) = a▷ b . ∎

3.2.3.3 The universe SP0
B of descriptions of B

We now introduce the universe SPB of descriptions for B. It has formation rule

Xref , Yref ∶ Set γA ∶ SP0
A

SPB(Xref , Yref , γA) type

Again, we are interested in codes which initially do not refer to any elements and define
γA ∶ SP0

A ⊢ SP0
B(γA) type by SP0

B(γA) ∶= SPB(0,0, γA).
The introduction rules for SPB are similar to the ones for SPA. However, we now

need to specify an index for the codomain of the constructor, and indices for arguments
inductive in B can be arbitrary terms built up from introA and elements we can refer to.

â ∶ A-Term(γA,Xref , Yref)
nil(â) ∶ SPB(Xref , Yref , γA)

The code nil(â) represents a trivial constructor c ∶ 1 → B(a) (a base case), where the
index a is encoded by â ∶ A-Term(γA,Xref , Yref).

K ∶ Set γ ∶K → SPB(Xref , Yref , γA)
non-ind(K,γ) ∶ SPB(Xref , Yref , γA))

45

3. A finite axiomatisation of inductive-inductive definitions

The code non-ind(K,γ) represents a non-inductive argument x ∶K, with the rest of the
arguments given by γ(x).

K ∶ Set γ ∶ SPB(Xref +K,Yref , γA)
A-ind(K,γ) ∶ SPB(Xref , Yref , γA)

The code A-ind(K,γ) represents an inductive argument with type K → A, with the rest
of the arguments given by γ.
K ∶ Set hindex ∶K → A-Term(Xref , Yref , γA) γ ∶ SPB(Xref , Yref +K,γA)

B-ind(K,hindex, γ) ∶ SPB(Xref , Yref , γA)
The code B-ind(K,hindex, γ) represents an inductive argument of type (x ∶ K) →
B(i(x)), where the index i(x) is determined by hindex, and the rest of the arguments
are given by γ. Notice how the index of the argument is now encoded by arbitrary
terms in A-Term(Xref , Yref , γA).

Example 3.11 The constructor

Π ∶ ((ΣΓ ∶ Ctxt)(Σσ ∶ Ty(Γ))Ty(Γ▷ σ)) → Ty(Γ)
is represented by the code

γΠ = A-ind(1,B-ind(1, λ ⋆ . Γ̂,B-ind(1, λ ⋆ . ̂in⟨Γ, σ⟩,nil(Γ̂))))
where Γ̂ = aref(inr(⋆)) is the element representing the first argument Γ ∶ Ctxt and
̂in⟨Γ, σ⟩ = arg(⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩) is the element representing Γ▷ σ. ∎

The definition of ArgB should now not come as a surprise. First, we have a formation
rule:

γA ∶ SP0
A

Xref , Yref ∶ Set
γ ∶ SPB(Xref , Yref , γA)

X ∶ Set
Y ∶X → Set

introA ∶ ArgA(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
ArgB(Xref , Yref , γA,X,Y, introA, repX, repindex, repY, γ) ∶ Set

The definition can be simplified for codes in SP0
B(γA):

Arg0
B(γA,X,Y, introA, γ) ∶= ArgB(0,0, γA,X,Y, introA, !X , !X , !Y ○!, γ)

We define4:

ArgB(, , , , , , , , ,nil(â)) = 1

ArgB(, , , , , , , , ,non-ind(K,γ)) = (Σx ∶K)ArgB(, , , , , , , , , γ(x))
ArgB(Xref , , ,X, , , repX, , ,A-ind(K,γ))

= (Σj ∶K →X)ArgB(Xref +K, , , , , , [repX, j], , , γ)
ArgB(, Yref , γA, , Y, introA, repX, repindex, repY,B-ind(K,hindex, γ))

= (Σj ∶ (x ∶K) → Y ((repA(γA, introA, repX, repindex, repY) ○ hindex)(x)))
ArgB(, Yref +K, , , , , , [repindex, repA(. . .) ○ hindex], [repY, j], γ)

4For readability, we have once again replaced arguments which are simply passed on with “ ” in the
recursive call, and likewise on the left hand side if the argument is not used otherwise.

46

3.2. A finite axiomatisation

Finally, we need the function Index0
B(. . .) ∶ ArgB(γA, γB,X,Y, introA) → X which

to each b ∶ ArgB(γA, γB,X,Y, introA) assigns an index a ∶ X such that the element
constructed from b is in Y (a).

γA ∶ SP0
A

Xref , Yref ∶ Set
γ ∶ SPB(Xref , Yref , γA)

X ∶ Set
Y ∶X → Set

introA ∶ ArgA(γA,X,Y) →X

repX ∶Xref →X
repindex ∶ Yref →X

repY ∶ (x ∶ Yref) → Y (repindex(x))
IndexB(Xref , Yref , γA,X,Y, introA, repX, repindex, repY, γ) ∶ ArgB(. . .) →X

For codes in SP0
B(γA), we define Index0

B ∶ Arg0
B(γA,X,Y, introA, γB) →X by

Index0
B(γA,X,Y, introA, γB) ∶= IndexB(0,0, γA,X,Y, introA, !X , !X , !Y ○!, γB) .

The equations by necessity follows the same pattern as the equations for ArgB. For
the base case γB = nil(â), we use repX(. . . , â), and for the other cases, we just do a
recursive call5

IndexB(, , γA, , , introA, repX, repindex, repY,nil(â),⋆)
= repA(γA, introA, repX, repindex, repY, â)

IndexB(, , , , , , , , ,non-ind(K,γ), ⟨k, y⟩)
= IndexB(, , , , , , , , , γ(k), y)

IndexB(Xref , , ,X, , , repX, , ,A-ind(K,γ), ⟨j, y⟩)
= IndexB(Xref +K, , , , , , [repX, j], , , γ, y)

IndexB(, Yref , γA, , Y, introA, repX, repindex, repY,B-ind(K,hindex, γ), ⟨j, y⟩)
= IndexB(, Yref +K, , , , , , [repindex, repA(. . .) ○ hindex], [repY, j], γ, y)

Example 3.12 Recall from Example 3.11 that the constructor Π ∶ ((ΣΓ ∶ Ctxt)(Σσ ∶
Ty(Γ))Ty(Γ▷ σ)) → Ty(Γ) from Example 3.1 is represented by the code

γΠ = A-ind(1,B-ind(1, (λ ⋆ . Γ̂),B-ind(1, (λ ⋆ . Γ̂▷ σ,nil(Γ̂))))) ∶ SP0
B(γ▷) ,

where Γ̂ = aref(inr(⋆)) ∶ A-Term(0 + 1,0, γ▷) and

Γ̂▷ σ = arg(⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩) ∶ A-Term(0 + 1,0 + 1, γ▷) .

We have

Arg0
B(γ▷,Ctxt,Ty,▷, γΠ) =

(ΣΓ ∶ 1→ Ctxt)(Σσ ∶ 1→ Ty(Γ(⋆)))(1→ Ty(Γ(⋆) ▷ σ(⋆))) × 1

and Index0
B(γ▷,Ctxt,Ty,▷, γΠ, ⟨Γ, σ, τ,⋆⟩) = Γ(⋆). ∎

5Simply passed on and otherwise not used arguments have been replaced with “ ” for readability.

47

3. A finite axiomatisation of inductive-inductive definitions

3.2.3.4 Formation and introduction rules

We are now ready to give the formation and introduction rules for A and B. They all
have the common premises γA ∶ SP0

A, γB ∶ SP0
B(γA), which will be omitted.

Axioms 3.13 (Formation and introduction rules for inductive-inductive definitions)
Formation rules:

AγA,γB
∶ Set BγA,γB

∶ AγA,γB
→ Set

Introduction rule for AγA,γB
:

a ∶ Arg0
A(γA,AγA,γB

,BγA,γB
)

introAγA,γB
(a) ∶ AγA,γB

Introduction rule for BγA,γB
:

b ∶ Arg0
B(γA,AγA,γB

,BγA,γB
, introAγA,γB

, γB)
introBγA,γB

(b) ∶ BγA,γB
(Index0

B(γA,AγA,γB
,BγA,γB

, introAγA,γB
, γB, b)) ∎

3.2.3.5 Derived rules for convenience

Encoding multiple constructors into one The theory we have presented assumes
that both A and B have exactly one constructor each. This is no limitation, as multi-
ple constructors can always be encoded into one by using non-inductive arguments.
Suppose that intro0 ∶ F0(A,B) → A and intro1 ∶ F1(A,B) → A are two constructors for
A. Then we can combine them into one constructor

intro0+1 ∶ ((Σi ∶ 2)Fi(A,B)) → A

by defining intro0+1(i, x) = introi(x). Of course, this is only possible because we have
dependent types at our disposal.

If intro0 is described by the code γ0 and intro1 by γ1, then intro0+1 is described by
the code

γ0 +SP γ1 ∶= non-ind(2, λx. if x then γ0 else γ1) .

Notice that this makes use of large elimination for Booleans 2 in an essential way, as
SPA(Xref) is a large type.

Single inductive arguments An inductive arguments is always of the form K → A
or (x ∶ K) → B(i(x)) for some set K of premises (and index function i ∶ K → A). If
we only want a single inductive argument, we choose K = 1. For convenience, we can
define

A-ind1 ∶ SPA(Xref + 1) → SPA(Xref)
B-ind1 ∶Xref → SPA(Xref) → SPA(Xref)

48

3.2. A finite axiomatisation

and the SPB variants

A-ind1 ∶ SPB(Xref + 1, Yref , γA) → SPB(Xref , Yref , γA)
B-ind1 ∶ A-Term(Xref , Yref , γA) → SPB(Xref , Yref + 1, γA) → SPB(Xref , Yref , γA)

by

A-ind1(γ) = A-ind(1, γ)
B-ind1(i, γ) = B-ind(1, λ . i, γ)

This is possible since we have η-rules for 1, so that the index i ∶ A-Term(Xref , Yref , γA)
cannot depend on x ∶ 1 in any way different from ⋆ ∶ 1. By using this abbreviation, we
can make the codes slightly more readable.

Non-dependent non-inductive arguments Later arguments may depend on non-
inductive arguments. In case they do not, we introduce the abbreviations

non-ind′ ∶ (K ∶ Set) → SPA(Xref) → SPA(Xref)
non-ind′ ∶ (K ∶ Set) → SPB(Xref , Yref , γA) → SPB(Xref , Yref , γA)

for
non-ind′(K,γ) = non-ind(K,λ . γ) .

3.2.4 The examples revisited

We show how to find γA, γB for some well-known sets, including the examples in
Section 3.1.

3.2.4.1 Well-orderings

Ordinary inductive definitions can be interpreted as inductive-inductive definitions
where we only care about the index set A and not about the family B ∶ A → Set. A
canonical choice is to let B have constructor introB ∶ (x ∶ A) → B(x), which is described
by the code γdummy ∶= A-ind(1,nil(aref(inr(⋆))))6.

For every A ∶ Set, B ∶ A→ Set, let

γW (A,B) ∶= non-ind(A,λx.A-ind(B(x),nil))

and define W (A,B) ∶= AγW (A,B),γdummy . Then W (A,B) has constructor

introW (A,B) ∶ ((Σx ∶ A)(B(x) →W (A,B)) × 1) →W (A,B) .

6Another choice is γdummy = non-ind(0, !SP0
B
(γA)), which makes B(x) an empty type.

49

3. A finite axiomatisation of inductive-inductive definitions

3.2.4.2 Finite sets

Also indexed inductive definitions can be interpreted as inductive-inductive definitions.
We simply let the index set A be an isomorphic copy of the fixed index set I from the
indexed inductive definition (i.e. A is given by the constructor introA ∶ I → A).

For the family Fin ∶ N→ Set of finite sets, the index set is N, so we define

γA ∶= non-ind′(N,nil) ∶ SP0
A

and
γFin ∶= γz +SP γs ∶ SP0

B(γA)
where

γz ∶= non-ind(N, λn.nil(arg(⟨n + 1,⋆⟩))) ,

γs ∶= non-ind(N, λn.B-ind1(arg(⟨n,⋆⟩),nil(arg(⟨n + 1,⋆⟩)))) .

Then the constructor introAγA,γFin
∶ (N × 1) → AγA,γFin

is one part of an isomorphism
N ≅ N × 1 ≅ AγA,γFin

, and if we define Fin ∶ N→ Set by

Fin(n) = BγA,γFin
(introAγA,γFin

(⟨n,⋆⟩)) ,

then we can define constructors

n ∶ N
zn ∶ Fin(n + 1)

n ∶ N m ∶ Fin(n)
sn(m) ∶ Fin(n + 1)

by zn = introBγA,γFin
(⟨tt, ⟨n,⋆⟩⟩) and

sn(m) = introBγA,γFin
(⟨ff, ⟨n, ⟨(λ ⋆ .m),⋆⟩⟩⟩ .

3.2.4.3 Contexts and types

The codes for the contexts and types from Example 3.1 are as follows:

γCtxt = nil +SP A-ind1(B-ind1(inr(⋆),nil)) ∶ SP0
A

γι = A-ind1(nil(aref(inr(⋆))))
γΠ = A-ind1(B-ind1(aref(inr(⋆)),B-ind1(arg(⟨ff, ⟨(λ ⋆ .bref(inr(⋆))), ⟨λ ⋆ .⋆,⋆⟩⟩⟩),

nil(aref(inr(⋆))))))
γTy = γι +SP γΠ ∶ SP0

B(γCtxt) .

We have Ctxt = AγCtxt,γTy
and Ty = BγCtxt,γTy

and we can define the usual constructors by

ε ∶ Ctxt ι ∶ (Γ ∶ Ctxt) → Ty(Γ)
ε = introAγCtxt,γTy

(⟨tt,⋆⟩) , ιΓ = introBγCtxt,γTy
(⟨tt, ⟨(λ ⋆ .Γ),⋆⟩⟩) ,

▷ ∶ (Γ ∶ Ctxt) → Ty(Γ) → Ctxt
Γ▷ σ = introAγCtxt,γTy

(⟨ff, ⟨(λ ⋆ .Γ), ⟨(λ ⋆ . σ),⋆⟩⟩⟩) ,

Π ∶ (Γ ∶ Ctxt) → (σ ∶ Ty(Γ)) → Ty(Γ▷ σ) → Ty(Γ)
Π(Γ, σ, τ) = introBγCtxt,γTy

(⟨ff, ⟨(λ ⋆ .Γ), ⟨(λ ⋆ . σ), ⟨(λ ⋆ . τ),⋆⟩⟩⟩⟩) .

50

3.2. A finite axiomatisation

3.2.5 Elimination rules

The fact that the sets just introduced are inductive is encoded in the elimination rules.
Intuitively, they state that a function from an inductive-inductive definition A ∶ Set, B ∶
A→ Set is determined by its values on constructors. Since functions can be dependent,
this also gives a way to do proofs by induction for inductive-inductive definitions.
How dependent should these functions be? The first thought that comes to mind is to
consider motives of the form

P ∶ A→ Set

Q ∶ (x ∶ A) → B(x) → Set

so that the elimination rules give rise to functions

elim′
A ∶ . . .→ (x ∶ A) → P (x)

elim′
B ∶ . . .→ (x ∶ A) → (y ∶ B(x)) → Q(x, y)

We call these elimination rules simple (not to be confused with simply typed, or non-
dependent elimination rules!), and formalise them in Section 3.2.5.2. Sometimes, how-
ever, we need a more general notion of elimination rules where the motive has the
form

P ∶ A→ Set

Q ∶ (x ∶ A) → B(x) → P (x) → Set

(notice the dependency of Q on P). In this case, the elimination rules gives rise to
functions

elimA ∶ . . .→ (x ∶ A) → P (x)
elimB ∶ . . .→ (x ∶ A) → (y ∶ B(x)) → Q(x, y, elimA(. . . , x))

where elimA appears in the type of elimB . We could summarise the situation in the
following slogan:

The elimination principle for inductive-inductive definitions is recursive-recursive.

We call these elimination rules the general rules. A closed axiomatisation of these rules
seem to require at least function extensionality (on the other hand, for closed inductive-
inductive definitions defined in the empty context, no such further assumptions are
necessary). Instead of giving these more involved rules, we will return to the general
elimination rules in Chapter 4, but from a high-level, categorical point of view.

3.2.5.1 Examples of elimination rules

Consider the data type of sorted lists7 from Example 3.2.
7The inductive-inductive definition of the data type of sorted lists falls outside the axiomatisation

presented in this chapter, as remarked at the end of Section 3.1. This will be justified in Section 6.2.1.

51

3. A finite axiomatisation of inductive-inductive definitions

Example 3.14 (Simple elimination rules for sorted lists)

elim′
SortedList ∶ (P ∶ SortedList→ Set) →

(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ Set) →
(stepnil ∶ P (nil)) →
(stepcons ∶ (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `) → P (`)

→ Q(n, `, p) → P (cons(n, `, p))) →
(steptriv ∶ (m ∶ N) → Q(m,nil, trivn)) →
(step≪⋅≫ ∶ (m ∶ N) → (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ (q ∶m ≤ n) → (p′ ∶m ≤L `) → P (`)
→ Q(n, `, p) → Q(m,`, p′) → Q(m, cons(n, `, p),≪ q, p′ ≫)) →

(` ∶ SortedList) → P (`) ,

elim′
≤L
∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ Set) →
(stepnil ∶ . . .) →
(stepcons ∶ . . .) →
(steptriv ∶ . . .) →
(step≪⋅≫ ∶ . . .) →
(n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `) → Q(n, `, p)

with computation rules

elim′
SortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,nil) = stepnil ∶ P (nil)

and

elim′
SortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫, cons(n, `, p))

= stepcons(n, `, p, elimSortedList(. . . , `), elim≤L(. . . , n, `, p)) ∶ P (cons(n, `, p))

for elim′
SortedList, and

elim′
≤L

(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,m,nil, trivm) = steptriv(m) ∶ Q(m,nil, trivm)

and

elim′
≤L

(P,Q, stepnil, stepcons, steptriv , step≪⋅≫,m, cons(n, `, p),≪ q, p′ ≫)
= step≪⋅≫(m,n, `, p, q, p′, elimSortedList(. . . , `),

elim≤L(. . . , n, `, p), elim≤L(. . . ,m, `, p′))

for elim≤L . ∎

52

3.2. A finite axiomatisation

Example 3.15 (General elimination rules for sorted lists)

elimSortedList ∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ P (`) → Set) →
(stepnil ∶ P (nil)) →
(stepcons ∶ (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `) → (̃̀∶ P (`))

→ Q(n, `, p, ̃̀) → P (cons(n, `, p))) →
(steptriv ∶ (m ∶ N) → Q(m,nil, trivn, stepnil)) →
(step≪⋅≫ ∶ (m ∶ N) → (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ (q ∶m ≤ n) → (p′ ∶m ≤L `) → (̃̀∶ P (`))
→ (p̃ ∶ Q(n, `, p, ̃̀)) → (p̃′ ∶ Q(m,`, p′, ̃̀))
→ Q(m, cons(n, `, p),≪ q, p′ ≫, stepcons(n, `, p, ̃̀, p̃))) →

(` ∶ SortedList) → P (`) ,

elim≤L ∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ P (`) → Set) →
(stepnil ∶ . . .) →
(stepcons ∶ . . .) →
(steptriv ∶ . . .) →
(step≪⋅≫ ∶ . . .) →
(n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ Q(n, `, p, elimSortedList(. . . , `)) .

The computation rules are the same for both the simple and general elimination rules,
except that computation rules for the general eliminator elim≤L are well-typed only
because of the computation rules for elimSortedList. ∎

Suppose that we want to define a function insert ∶ SortedList→ N→ SortedList which
inserts a number m into its appropriate place in a sorted list ` to create a new sorted list
insert(`,m). From a high-level perspective, this is easy: the elimination rules allows us
to make case distinctions between empty and non-empty lists, so it suffices to handle
these two cases separately. The empty list is easy to handle, and for non-empty lists, we
compare m with the first element n of the list ` = [n, . . .], which is possible since ≤ on
natural numbers is decidable. If m ≤ n, the result should be [m,n, . . .], otherwise we
recursively insert m into the tail of the list.

In detail, we choose the motive P (`) ∶= N → SortedList and, in our first attempt,
we also choose the motive Q(n, `, p, ̃̀) ∶= 1, since we are only interested in getting a
function elimSortedList(. . .) ∶ SortedList → N → SortedList. We need to give functions

53

3. A finite axiomatisation of inductive-inductive definitions

stepnil ∶ (m ∶ N) → SortedList and stepcons(n, `, p) ∶ (̃̀∶ N → SortedList) → Q(n, `, p, ̃̀) →
(m ∶ N) → SortedList to use when inserting into the empty list or the list cons(n, `, p)
respectively. The argument ̃̀∶ N→ SortedList gives the result of a recursive call on `.

The function stepnil is easy to define: it should be

stepnil(m) = cons(m,nil, trivm)

For stepcons, the decidability of ≤ (combined with the fact that ≤ is total) allows us to
distinguish between the cases when m ≤ n and n ≤ m, and we are entitled to a proof
q ∶m ≤ n or q ∶ n ≤m of this fact. We try:

stepcons(n, `, p, ̃̀,⋆,m)

=
⎧⎪⎪⎨⎪⎪⎩

cons(m, cons(n, `, p),≪ q, trans≤L(q, p) ≫) where q ∶m ≤ n
cons(n, ̃̀(m), {?}) where q ∶ n ≤m

Here, trans≤L ∶ m ≤ n → n ≤L ` → m ≤L ` witnesses a kind of transitivity of ≤ and ≤L.
It can be straightforwardly defined with the elimination rules. The question is what
we should fill the hole {?} with. We need to provide a proof that n ≤L l̃(m), i.e. that
n ≤L insert(l,m), if we remember that l̃ is the result of the recursive call on `. We need
to prove this simultaneously as we define insert! Fortunately, this is exactly what the
general elimination rules allow us to do if we choose a more meaningful Q.

Thus, we try again, but this time with

Q(n, `, p, ̃̀) ∶= (m ∶ N) → n ≤m→ n ≤L l̃(m) .

Note that this would not have been possible with the simple elimination rules. The
argument ⋆ ∶ 1 to stepcons in our first attempt has now been replaced with the argument
p̃ ∶ (m ∶ N) → n ≤m→ n ≤L l̃(m), and we can define

stepcons(n, `, p, ̃̀, p̃,m) =
⎧⎪⎪⎨⎪⎪⎩

cons(m, cons(n, `, p),≪ q, trans≤L(q, p) ≫) where q ∶m ≤ n
cons(n, ̃̀(m), p̃(m,q)) where q ∶ n ≤m

Now we must also define steptriv ∶ (n ∶ N) → Q(n,nil, trivn, stepnil) and step≪⋅≫ with type
as above for our choice of P and Q. This presents us with no further difficulties. For
steptriv , expanding Q(n,nil, trivn, stepnil) and replacing stepnil with its definition, we see
that we should give a function of type

steptriv ∶ (n ∶ N) → (m ∶ N) → n ≤m→ n ≤L cons(m,nil, trivm) ,

so we can define steptriv(n,m, p) = ≪ p, trivn ≫. The definition of step≪⋅≫ follows the
pattern of stepcons above. Rather than trying to explain it, we just give the definition:

step≪⋅≫(m,n, `, p, q, p′, ̃̀, p̃, p̃′, x, r) =
⎧⎪⎪⎨⎪⎪⎩

≪ r,≪ q, p′ ≫≫ where s ∶m ≤ n
≪ q, p̃′(x, r) ≫ where s ∶ n ≤m

With all pieces in place, we can now define insert ∶ SortedList → N → SortedList as
insert = elimSortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫).

54

3.2. A finite axiomatisation

Table 3.2: Concepts involved in the elimination rules.

Name Meaning

IHA, IHB sets of inductive hypotheses
mapIHA

, mapIHB
recursive calls

elimAγA,γB
, elimAγA,γB

eliminators

3.2.5.2 Simple elimination rules

We now present the axiomatisation of the simple elimination rules, which follows the
presentation in Section 3.2.2 closely. The concepts involved are summarised in Table 3.2.

We first define

Xref ∶ Set
γ ∶ SPA(Xref)

X ∶ Set
Y ∶X → Set

repX ∶Xref →X
P ∶X → Set

Q ∶ (x ∶X) → Y (x) → Set x ∶ ArgA(Xref , γ,X,Y, repX)
IHA(Xref , γ,X,Y, repX, P,Q,x) ∶ Set

and

. . .
P ∶X → Set

Q ∶ (x ∶X) → Y (x) → Set x ∶ ArgB(Xref , Yref , γA,X,Y, repX, repindex, repY, γB)
IHB(Xref , Yref , γ,X,Y, introA, repX, repindex, repY, P,Q,x) ∶ Set

by induction over γ and γB respectively8:

IHA(. . . ,nil, P,Q,⋆) = 1

IHA(. . . ,non-ind(K,γ), P,Q, ⟨k, x⟩) = IHA(γ(k), P,Q,x)
IHA(. . . ,A-ind(K,γ), . . . , P,Q, ⟨j, x⟩) = ((k ∶K) → P (j(k))) × IHA(. . . , γ, . . . , P,Q,x)

IHA(. . . ,B-ind(K,h, γ), . . . , P,Q, ⟨j, x⟩) =
((k ∶K) → Q(repX(h(k)), j(k))) × IHA(. . . , γ, . . . , P,Q,x)

IHB(. . . ,nil(a), P,Q,⋆) = 1

IHB(. . . ,non-ind(K,γ), P,Q, ⟨k, x⟩) = IHB(γ(k), P,Q,x)
IHB(. . . ,A-ind(K,γ), . . . , P,Q, ⟨j, x⟩) = ((k ∶K) → P (j(k))) × IHB(. . . , γ, . . . , P,Q,x)

IHB(. . . ,B-ind(K,h, γ), . . . , P,Q, ⟨j, x⟩) =
((k ∶K) → Q(repA(. . . , h(k)), j(k))) × IHB(. . . , γ, . . . , P,Q,x)

Note that these two sets are completely independent of one another. We now define
functions mapIHA

and mapIHB
which take care of the recursive calls. The first function

mapIHA
has the following type:

. . .
f ∶ (x ∶X) → P (x)

g ∶ (x ∶X) → (y ∶ Y (x)) → Q(x, y) x ∶ ArgA(Xref , γ,X,Y, repX)
mapIHA

(Xref , γ,X,Y, repX, P,Q, f, g, x) ∶ IHA(Xref , γ,X,Y, repX, P,Q,x)
8We have suppressed arguments that are handled in the same way as for ArgA and ArgB respectively.

55

3. A finite axiomatisation of inductive-inductive definitions

while mapIHB
is of type

. . .
f ∶ (x ∶X) → P (x)

g ∶ (x ∶X) → (y ∶ Y (x)) → Q(x, y) x ∶ ArgB(Xref , Yref , γA,X,Y, repX, repindex, repY, γB)
mapIHB

(Xref , Yref , γA,X,Y, introA, repX, repindex, repY, P,Q, γB, f, g, x) ∶ IHB(Xref , γ,X,Y, repX, P,Q,x)

The defining equations are:

mapIHA
(. . . ,nil, f, g,⋆) = ⋆

mapIHA
(. . . ,non-ind(K,γ), f, g, ⟨k, x⟩) = mapIHA

(γ(k), f, g, x)
mapIHA

(. . . ,A-ind(K,γ), . . . , f, g, ⟨j, x⟩) = ⟨f ○ j,mapIHA
(. . . , γ, . . . , f, g, x)⟩

mapIHA
(. . . ,B-ind(K,h, γ), . . . , f, g, ⟨j, x⟩) =

⟨λk. g(repX(h(k)), j(k)),mapIHA
(. . . , γ, . . . , f, g, x)⟩

mapIHB
(. . . ,nil(a), f, g,⋆) = ⋆

mapIHB
(. . . ,non-ind(K,γ), f, g, ⟨k, x⟩) = mapIHB

(γ(k), f, g, x)
mapIHB

(. . . ,A-ind(K,γ), . . . , f, g, ⟨j, x⟩) = ⟨f ○ j,mapIHB
(. . . , γ, . . . , f, g, x)⟩

mapIHB
(. . . ,B-ind(K,h, γ), . . . , f, g, ⟨j, x⟩) =

⟨λk. g(repA(. . . , h(k)), j(k)),mapIHB
(. . . , γ, . . . , f, g, x)⟩

We define

IH0
A(γA, P,Q) ∶ Arg0

A(γA,X,Y) → Set

IH0
B(γA, γB, P,Q) ∶ Arg0

B(γA, γB,X,Y, introA) → Set

map0
IHA

(γA, f, g) ∶ (x ∶ Arg0
A(γA,X,Y)) → IH0

A(γA, P,Q,x)
map0

IHB
(γA, γB, f, g) ∶ (x ∶ Arg0

B(γA, γB,X,Y, introA)) → IH0
B(γA, γB, P,Q,x)

for γA ∶ SP0
A and γB ∶ SP0

B(γA) by

IH0
A(γA, P,Q) ∶= IHA(0, γ,X,Y, !(), P,Q)

IH0
B(γA, γB, P,Q) ∶= IHB(0,0, γ,X,Y, introA, !, !, !, P,Q)

map0
IHA

(γA, f, g) ∶= mapIHA
(0, γ,X,Y, !, P,Q, f, g, x)

map0
IHB

(γA, γB, f, g) ∶= mapIHB
(0,0, γA,X,Y, introA, !, !, !, P,Q, γB, f, g)

as usual. We can now present the simple elimination principle for the inductive-
inductive definition given by the codes γA, γB. We suppress the common premises
γA ∶ SP0

A, γB ∶ SP0
B(γA).

Axioms 3.16 (Simple elimination rules) Simple elimination rule for AγA,γB
:

P ∶X → Set
Q ∶ (x ∶X) → Y (x) → Set

f ∶ (x ∶ Arg0
A(γA,AγA,γB

,BγA,γB
)) → IH0

A(γA, P,Q,x) → P (introAγA,γB
(x))

g ∶ (y ∶ Arg0
B(γA, γB,AγA,γB

,BγA,γB
, introAγA,γB

)) → IH0
B(γB, P,Q, y) → Q(Index0

B(γB, y), introBγA,γB
(y))

elimAγA,γB
(P,Q, f, g) ∶ (x ∶ AγA,γB

) → P (x)

56

3.3. Summary and discussion

Simple elimination rule for BγA,γB
:

P ∶X → Set
Q ∶ (x ∶X) → Y (x) → Set

f ∶ (x ∶ Arg0
A(γA,AγA,γB

,BγA,γB
)) → IH0

A(γA, P,Q,x) → P (introAγA,γB
(x))

g ∶ (y ∶ Arg0
B(γA, γB,AγA,γB

,BγA,γB
, introAγA,γB

)) → IH0
B(γB, P,Q, y) → Q(Index0

B(γB, y), introBγA,γB
(y))

elimBγA,γB
(P,Q, f, g) ∶ (x ∶ AγA,γB

) → (y ∶ B(x)) → Q(x, y)

Computation rules:

elimAγA,γB
(P,Q, f, g, introAγA,γB

(x)) =
f(x,map0

IHA
(γA, elimAγA,γB

(P,Q, f, g), elimBγA,γB
(P,Q, f, g), x))

elimBγA,γB
(P,Q, f, g, Index0

B(γB, y), introBγA,γB
(y)) =

g(y,map0
IHB

(γA, γB, elimAγA,γB
(P,Q, f, g), elimBγA,γB

(P,Q, f, g), y)) ∎

3.3 Summary and discussion
By extending the type theory given in Chapter 2, we have given a finite axiomatisation
of inductive-inductive definitions. The axiomatisation is given as a schema of inductive-
inductive definitions, represented by the type of their constructors, but internalised in
Type Theory; we introduce a universe of codes for sets defined inductive-inductively,
together with their decoding. The power of the theory then lies in the rules which says
that each code has an associated constructor, and satisfies an elimination rule.

Equality, and how to avoid it In the proof of Lemma 3.9, we constructed a function
of type

ArgA(. . . , repX, . . .) → ArgA(. . . , rep′X, . . .) , (3.1)
given that rep′X = f ○ repX. Why did we not simply construct a function of type

ArgA(. . . , repX, . . .) → ArgA(. . . , f ○ repX, . . .)

instead? The reason is that rep′X = f ○ repX is actually too strong a requirement – we only
needed rep′X and f ○ repX to be pointwise equal, which is lucky, since this is all they are
in certain recursive calls. Thus, we can define a function like in (3.1), as long as we can
maintain the invariant that rep′X(x) = f(repX(x)) for all x ∶Xref , even as Xref grows.

In impredicative Type Theory, equality can be defined as Leibniz equality: two
elements x, y ∶ A are equal if they satisfy the same properties, i.e. if

(P ∶ A→ Set) → P (x) → P (y)

is inhabited. This is not possible in predicative Martin-Löf Type Theory, as quantification
over all P ∶ A→ Set as a small type is not possible. However, if we already know that
we only want to use x and y in a finite number of ways, we can instantiate P with those
specific properties that we want to use, and eliminate a use of the identity type. In
other words, instead of proving p ∶ x ≡A y and later using subst(B,p, x), we can prove
p̃B ∶ B(x) → B(y) directly (if the proof of p was by refl, p̃B will be the identity function).
This is what we do in the proof of Lemma 3.9, so that the identity type can become an
instance of our theory instead of a prerequisite.

57

3. A finite axiomatisation of inductive-inductive definitions

Implementing inductive-inductive definitions The theory we have presented should
lend itself quite well for implementation; on top of a “normal” type theory, certain
constants are postulated with a certain reduction behaviour, but always in a type-safe
and sensible way. Indeed, we have not done so, but SPA and SPB can be considered to
be (large) inductive definitions, in which case ArgA, ArgB etc can be considered to be
defined by recursion over the codes. This way, the theory can be formalised in Agda
(see Appendix A).

Of course, for an actual implementation, the user would not work directly with the
codes in SPA and SPB, but would rather write data type declarations that would be
elaborated to codes in the core Type Theory [Dagand and McBride, 2013]. It would be
interesting to see how far this idea can be taken.

58

Chapter4

A categorical characterisation

Contents
4.1 Inductive-inductive definitions as dialgebras 59
4.2 A framework for generic elimination rules 65
4.3 The equivalence between having an eliminator and being initial . . . 83
4.4 Summary and discussion . 86

In this chapter, we seek a more abstract characterisation of inductive-inductive defini-
tions. In the spirit of initial algebra semantics, we will characterise inductive-inductive
definitions as initial objects in a category of “algebras”. First we develop a generic
framework for elimination rules which makes it possible to abstract away from the
details when proving the equivalence of initiality in the category and the standard
elimination rules. We then instantiate the framework to inductive-inductive definitions
(with the general elimination rules) by considering an appropriate category. Because of
the categorical setting, we work in extensional type theory in this chapter.

Parts of this chapter have appeared in the proceedings of CALCO 2011 [Altenkirch,
Morris, Nordvall Forsberg, and Setzer, 2011].

4.1 Inductive-inductive definitions as dialgebras

Within the paradigm of initial algebra semantics [Goguen et al., 1977], a data type is
modelled as the carrier of the initial algebra of a functor F . In more detail, let C be a
category whose objects we think of as data types, and let F ∶ C→ C be an endofunctor
on C. An F -algebra is a pair (X,f) where X is an object of C and f ∶ F (X) → X . We
call X the carrier of the algebra.

For any endofunctor F , the collection of F -algebras itself forms a category AlgF of
F -algebras. A morphism from (X,f) to (Y, g) is a map h ∶ X → Y in C such that the
following diagram commutes:

59

4. A categorical characterisation

F (X) f //

F (h)
��

X

h

��
F (Y) g

// Y

The initial F -algebra (µF, inF) is the initial object in this category. As all initial objects,
when it exists, it is unique up to isomorphism. The object µF is the interpretation of
the data type described by F , while the morphism inF ∶ F (µF) → µF interprets its
constructors. We call F the pattern functor for the data type µF . Initiality ensures that,
given any F -algebra g ∶ F (X) →X , there is a unique F -algebra homomorphism foldF g
from the initial algebra (µF, inF) to that algebra. This is the semantic counterpart of
the elimination rule for µF .

This gives a principled and expressive formalism for dealing with the semantics
of simply typed data types. However, when trying to use initial algebra semantics to
model inductive-inductive definitions, we run into two problems: (i) it is not enough to
consider endofunctors F ∶ C → C, and (ii) we need to talk about dependent function
spaces. The first problem is particular for inductive-inductive definitions. We will
see how it arises, and discuss a solution to it in Section 4.1.1. The second problem
is common to initial algebra approaches for dependent type theory in general, and a
solution has been rediscovered in slightly different settings multiple times for many
different systems; Closest to our own is Dybjer and Setzer’s solution for induction-
recursion [Dybjer and Setzer, 2003]. We develop a framework that can be instantiated
to yield these different instances in Section 4.2, also taking the first problem (i) into
account.

4.1.1 Dialgebras

One could imagine that inductive-inductive definitions could be described by functors
mapping families of sets to families of sets (similar to the situation for induction-
recursion [Dybjer and Setzer, 2003]), but this fails to take into account that the construc-
tors for B should be able to refer to the constructors for A. We have seen in Chapter 3
that the constructor for B can be described by an operation

ArgB ∶ (A ∶ Set)(B ∶ A→ Set)(c ∶ ArgA(A,B) → A) → ArgA(A,B) → Set

where c ∶ ArgA(A,B) → A refers to the already defined constructor for A. However,
(ArgA,ArgB) is then no longer an endofunctor. We will model the constructor for B as
(the second component of) a morphism (c, d) ∶ Arg(A,B, c) → (A,B) between families
of sets. Recall from Definition 3.6 that if D is a category, then FamD is the category
which has as objects pairs (A,B), where A ∶ Set and B ∶ A → D. A morphism from
(A,B) to (A′,B′) is a pair (f, g) where f ∶ A→ A′ and g ∶ (x ∶ A) → B(x) → B′(f(x)).

Note that there is a forgetful functor U ∶ FamD→ Set sending (A,B) to A and (f, g)
to f , which we call the index set functor. We are interested in the situation where D = Set.
Now, c ∶ ArgA(A,B) → A is not an ArgA-algebra, since ArgA ∶ Fam(Set) → Set is not

60

4.1. Inductive-inductive definitions as dialgebras

an endofunctor. However, we have c ∶ ArgA(A,B) → U(A,B). This means that c is a
(ArgA, U)-dialgebra [Hagino, 1987]:

Definition 4.1 Let F,G ∶ C → D be functors. The category Dialg(F,G) has as objects
pairs (X,f) whereX is an object in C and f ∶ F (X) → G(X). A morphism from (X,f)
to (Y, g) is a morphism h ∶X → Y in C such that the following diagram in D commutes:

F (X) f //

F (h)
��

G(X)
G(h)
��

F (Y) g
// G(Y)

(4.1)

∎

Let F,G ∶ C → D. There is a forgetful functor V ∶ Dialg(F,G) → C defined by
V (A,f) = A. Dialgebras are called subequalisers by Lambek [1970], and are a special
case of inserters [Kelly, 1989] in the 2-category of categories. If we choose G to be the
identity functor Id ∶ C→ C, we recover the concept of an F -algebra.

Putting things together, we will model the constructor for A as a morphism c ∶
ArgA(A,B) → U(A,B) in Set, i.e. as a function c ∶ ArgA(A,B) → A, and the constructor
for B as the second component of a morphism (c, d) ∶ Arg(A,B, c) → V (A,B, c) in
Fam(Set), i.e. as the second component of a morphism (c, d) ∶ Arg(A,B, c) → (A,B).
Thus, we see that the data needed to describe (A,B) as inductively generated with
constructors c, d are the functors ArgA and Arg. However, we must also make sure that
the first component of Arg coincides with ArgA, i.e. that U ○Arg = ArgA ○ V . Each code
in the axiomatisation in Chapter 3 gives rise to such functors:

Proposition 4.2 Each code γ = (γA, γB) for an inductive-inductive definition induces
two functors

ArgA ∶ Fam(Set) → Set Arg ∶ Dialg(ArgA, U) → Fam(Set)

defined by
ArgA(A,B) ∶= Arg0

A(γA,A,B)

and

Arg(A,B, c) ∶=
(ArgA(A,B), λx.{ y ∶Arg0

B(γA, γB,A,B, c) ∣ c(x) = Index0
B(γA,A,B, c, γB, y)}) .

Note that U ○Arg = ArgA ○ V .

Proof. We have already seen that ArgA is functorial in Lemma 3.9. Similarly, Arg can be
proven to be functorial by induction over γB, making crucial use of extensionality and the
fact that morphisms in Dialg(ArgA, U) make diagrams of the form (4.1) commute.

61

4. A categorical characterisation

Remark 4.3 If we have two functors ArgA, Arg as in Proposition 4.2, that is

ArgA ∶ Fam(Set) → Set

Arg ∶ Dialg(ArgA, U) → Fam(Set)

with U ○Arg = ArgA ○ V , then the first functor is determined as the first component of
the second, and we often write such a pair as Arg = (ArgA,ArgB) where

ArgB ∶ (A ∶ Set)(B ∶ A→ Set)(c ∶ ArgA(A,B) → A) → ArgA(A,B) → Set .

Example 4.4 (Contexts and types) The inductive-inductive definition of Ctxt ∶ Set and
Ty ∶ Ctxt→ Set is given by

ArgCtxt(A,B) = 1 +Σ Γ ∶A.B(Γ)
ArgTy(A,B, c, x) = 1 +Σσ ∶B(c(x)).B(c(inr(c(x), σ))) .

For ArgCtxt, the left summand 1 corresponds to the constructor ε taking no arguments,
and the right summand Σ Γ ∶A.B(Γ) corresponds to ▷’s two arguments Γ ∶ Ctxt and
σ ∶ Ty(Γ). Similar considerations apply to ArgTy. ∎

Example 4.5 (Sorted lists) The sorted list example does not fit into our framework,
since ≤L∶ (N × SortedList) → Set is indexed by N × SortedList and not simply SortedList.
It is however straightforward to generalise the construction to include this example
as well: instead of considering ordinary families, consider “N×A-indexed” families
(A,B) where A is a set and B ∶ (N ×A) → Set. The inductive-inductive definition of
SortedList ∶ Set and ≤L∶ (N × SortedList) → Set is then given by

ArgSList(A,B) = 1 + (Σn ∶N.Σ ` ∶A.B(n, `))
Arg≤L

(A,B, c,m, inl(⋆)) = 1

Arg≤L
(A,B, c,m, inr(⟨n, `, p⟩)) = Σm ≤ n.B(m,`) .

For ease of presentation, we will only consider ordinary families of sets in this chapter,
but will extend the theory to cover this example as well in Section 6.2. ∎

4.1.2 A category for inductive-inductive definitions

Given Arg = (ArgA,ArgB) representing an inductive-inductive definition, we will now
construct a category EArg whose initial object (if it exists) is the intended interpretation
of the inductive-inductive definition. Figure 4.1 summarises the functors and categories
involved (U , V and W are all forgetful functors).

One might think that the category we are looking for is Dialg(Arg, V), where
V ∶ Dialg(ArgA, U) → Fam(Set) is the forgetful functor. Dialg(Arg, V) has objects
(A,B, c, (d0, d1)), where A ∶ Set, B ∶ A → Set, c ∶ ArgA(A,B) → A and (d0, d1) ∶
Arg(A,B, c) → (A,B). The function d0 ∶ ArgA(A,B) → A looks like the constructor for
A that we want, but

d1 ∶ (x ∶ ArgA(A,B)) → ArgB(A,B, c, x) → B(d0(x))

62

4.1. Inductive-inductive definitions as dialgebras

Set Fam(Set)
ArgA

ww

U

ff Dialg(ArgA, U)
Arg

tt

V

jj
Dialg(Arg, V)

(V,U)
ss

W

kk
EArg? _oo

Figure 4.1: The functors and categories involved.

does not have the type we expect of the constructor for B; it would, if only c and d0

were the same! To this end, we will consider the equaliser of the forgetful functor

W ∶ Dialg(Arg, V) → Dialg(ArgA, U)
defined by W (A,B, c, (d0, d1)) = (A,B, c), and the functor (V,U) defined by

(V,U)(A,B, c, (d0, d1)) ∶= (V (A,B, c), U(d0, d1)) = (A,B, d0)
(V,U)(f, g) ∶= (f, g)

Note that U(d0, d1) ∶ U(Arg(A,B, c)) → U(V (A,B, c)) but U ○ Arg = ArgA ○ V , so that
U(d0, d1) ∶ ArgA(V (A,B, c)) → U(V (A,B, c)). In other words, (V (A,B, c), U(d0, d1))
is an object in Dialg(ArgA, U). Hence (V,U) really is a functor from Dialg(Arg, V) to
Dialg(ArgA, U).

Definition 4.6 For Arg = (ArgA,ArgB) representing an inductive-inductive definition,
let EArg be the underlying category of the equaliser of (V,U) and the forgetful functor
W ∶ Dialg(Arg, V) → Dialg(ArgA, U). ∎

Explicitly, the category EArg has

• Objects (A,B, c, d), where A ∶ Set, B ∶ A → Set, c ∶ ArgA(A,B) → A, d ∶ (x ∶
ArgA(A,B)) → ArgB(A,B, c, x) → B(c(x)).

• Morphisms from (A,B, c, d) to (A′,B′, c′, d′) are morphisms
(f, g) ∶ (A,B, c) ⇒Dialg(ArgA,U) (A′,B′, c′) such that in addition

g(c(x), d(x, y)) = d′(ArgA(f, g)(x),ArgB(f, g)(x, y)) .

Example 4.7 Consider the functors ArgCtxt, ArgTy from Example 4.4:

ArgCtxt(A,B) = 1 +Σ Γ ∶A.B(Γ)
ArgTy(A,B, c, x) = 1 +Σσ ∶B(c(x)).B(c(inr(c(x), σ))) .

An object inE(ArgCtxt,ArgTy) consists ofA ∶ Set,B ∶ A→ Set and morphisms c = [εA,B,▷A,B]
and d = λΓ. [ιA,B(Γ),ΠA,B(Γ)] which can be split up into1

εA,B ∶ 1→ A , ▷A,B ∶ ((Γ ∶ A) ×B(Γ)) → A ,

ιA,B ∶ (Γ ∶ ArgCtxt(A,B)) → 1→ B(c(Γ)) ,

ΠA,B ∶ (Γ ∶ ArgCtxt(A,B)) → ((σ ∶ B(c(Γ))) × (τ ∶ B(▷A,B(c(Γ), σ)))) → B(c(Γ)) . ∎
1Notice that ιA,B ∶ (Γ ∶ ArgCtxt(A,B)) → . . . and not ιA,B ∶ (Γ ∶ A) → . . . as one would maybe expect.

There is no difference for initial A, as we have ArgCtxt(A,B) ≅ A by (a variant of) Lambek’s Lemma.

63

4. A categorical characterisation

In Section 6.2, we will generalise the current construction to the simultaneous
definition of A ∶ Set, B ∶ A → Set, C ∶ (x ∶ A) → B(x) → Set, . . . by extending the
construction hinted at in Figure 4.1.

The intended interpretation of the inductive-inductive definition given by Arg =
(ArgA,ArgB) is the initial object in EArg. Depending on the meta-theory, this might of
course not exist. We will show that it does if and only if an eliminator for the inductive-
inductive definition exists. To avoid the messy details, we will prove the statement for
a more abstract notion of data types in Section 4.2.

Remark 4.8 We need to pass from Dialg(Arg, V) to the equaliser category EArg since
the objects in Dialg(Arg, V) are not quite of the right shape for inductive-inductive
definitions, which we intend to interpret as initial objects in the appropriate category.
However, since EArg is a subcategory of Dialg(Arg, V), we could hope to prove that the
initial object of Dialg(Arg, V) already lives in EArg, in order to simplify the construction.
I have not succeeded in doing so.

4.1.2.1 How to exploit initiality: an example

Let us consider an example of how to use initiality to derive a program dealing with the
contexts and types from Example 4.7. Suppose that we want to define a concatenation
++ ∶ Ctxt → Ctxt → Ctxt of contexts – such an operation could be useful to formulate
more general formation rules, such as:

σ ∶ Ty(Γ) τ ∶ Ty(∆)
σ × τ ∶ Ty(Γ ++∆)

Such an operation should satisfy the equations

∆ ++ ε = ∆
∆ ++ (Γ▷ σ) = (∆ ++ Γ)▷(wkΓ(σ,∆)) ,

where wk ∶ (Γ ∶ Ctxt) → (σ ∶ Ty(Γ)) → (∆ ∶ Ctxt) → Ty(∆++Γ) is a weakening operation,
i.e. if σ ∶ Ty(Γ), then wkΓ(σ,∆) ∶ Ty(∆ ++ Γ). A moment’s thought should convince us
that we want wk to satisfy

wkΓ(ιΓ,∆) = ι∆++Γ

wkΓ(ΠΓ(σ, τ),∆) = Π∆++Γ(wkΓ(σ,∆),wkΓ▷σ(τ,∆)) .

Our hope is now to exploit the initiality of (Ctxt,Ty) to get such operations. Recall
from Example 4.4 that Ctxt, Ty are the underlying sets for the inductive-inductive
definition given by the functors

ArgCtxt(A,B) = 1 +Σ Γ ∶A.B(Γ)
ArgTy(A,B, c, x) = 1 + (Σσ ∶B(c(x)). τ ∶B(c(inr(c(x), σ)))) .

64

4.2. A framework for generic elimination rules

From the types of

++ ∶ Ctxt→ Ctxt→ Ctxt

wk ∶ (Γ ∶ Ctxt) → Ty(Γ) → (∆ ∶ Ctxt) → Ty(∆ ++ Γ) ,

we see that if we can equip (A,B) where A ∶= Ctxt → Ctxt and B(f) ∶= (∆ ∶ Ctxt) →
Ty(f(∆)) with an (ArgCtxt,ArgTy) structure, initiality will give us functions of the right
type. Of course, we must choose the right structure so that our equations will be
satisfied:

inA ∶ ArgCtxt(A,B) → A
inA(inl(⋆)) = λ∆.∆
inA(inr(⟨f, g⟩)) = λ∆. (f(∆) ▷ g(∆)) ,

inB ∶ (x ∶ ArgCtxt(A,B)) → ArgTy(A,B, inA, x) → B(inA(x))
inB(∆, inl(⋆)) = λΓ. ιinA(∆)(Γ)
inB(∆, inr(⟨g, h⟩)) = λΓ.ΠinA(∆)(Γ)(g(Γ), h(Γ)) .

Since (A,B, inA, inB) is an object in EArg, initiality gives us a morphism (++,wk) ∶
(Ctxt,Ty) → (A,B) such that

(++,wk) ○ ([ε,▷], [ι,Π]) = (inA, inB) ○ (ArgCtxt,ArgTy)(++,wk) .

In particular, this means that

++(ε) = inA(ArgCtxt(++,wk)(inl(⋆))) = inA(inl(⋆)) = λ∆.∆

++(Γ▷ σ) = inA(ArgCtxt(++,wk)(inr(⟨Γ, σ⟩))) = inA(inr(⟨++(Γ),wk(Γ, σ)⟩))
= λ∆. ++ (Γ,∆) ▷wk(Γ, σ,∆) .

Thus, we see that ∆ ++ ε = ∆ and ∆ ++ (Γ▷ σ) = (∆ ++ Γ) ▷wkΓ(σ,∆) as required.2 In
the same way, the equations for the weakening operation hold.

4.2 A framework for generic elimination rules

We now prove the equivalence between being initial and having an eliminator. To make
the size of the equations we have to juggle around bearable, we will abstract away
from the particular instance of inductive-inductive definitions and consider a general
framework of elimination rules for different kinds of “inductive-like” definitions. Our
concrete result can then be reconstructed by instantiating the framework with the
category introduced in Section 4.1.2.

2Actually, the order of the arguments is reversed, so we would have to define ∆ ++′ Γ ∶= Γ ++∆.

65

4. A categorical characterisation

4.2.1 Categories with Families

In order to come up with a framework for generic elimination rules, we try to isolate
the different concepts involved in a dependent eliminator, in contrast to an iterator such
as foldF .

(i) We can model data types and non-dependent functions as objects and morphisms
in a category C. For instance, inductive definitions X ∶ Set can be modelled as
objects in Set, and I-indexed inductive families X ∶ I → Set as objects in SetI .

(ii) We need to be able to talk about predicates on X (for instance, for an inductive
definition X ∶ Set, we would like to talk about P ∶X → Set, and for an inductive
family X ∶ I → Set, a predicate P on X should have type P ∶ (i ∶ I) →X(i) → Set).

(iii) Given a predicate P on X , we want to be able to form a “sigma type” or compre-
hension ΣXP of the same standing as X – in other words, ΣXP should also be
an object in C (for instance, an ordinary sigma type Σx ∶X.P (x) for an inductive
definition X ∶ Set, and an “indexed sigma type” i ↦ Σx ∶ X(i).P (i, x) for an
inductive family X ∶ I → Set).

(iv) Given a predicate P , we want to consider “dependent functions” f ∶ ΠXP . Just as
hom-sets in a category need not be represented internally by an exponential object,
we do not need to demand that the collection of all such dependent functions is
represented in C. (For instance, an ordinary dependent function f ∶ (x ∶ X) →
P (x) for an inductive definition X ∶ Set, and “indexed dependant functions”
f ∶ (i ∶ I) → (x ∶X(i)) → P (i, x) for an inductive family X ∶ I → Set).

This looks like the structure of a Category with Families [Dybjer, 1996; Hofmann, 1997].
Categories with Families were introduced by Dybjer [1996] as “uncategorical cate-
gorical models of Type Theory” with the aim of being a syntax-free presentation of
Type Theory as close to the syntax as possible. Many similar models have been pro-
posed, e.g. Cartmell’s categories with attributes [Cartmell, 1978], Jacobs’ comprehension
categories [Jacobs, 1993] and Taylor’s display map categories [Taylor, 1999].

Definition 4.9 A Category with Families (CwF) is given by

• A category C with a terminal object 1,

• A functor F ∶ Cop → Fam(Set). We write F (Γ) = (Ty(Γ), λA. (Γ ⊢ A)) for the two
components of F . For the morphism part, we introduce the notation −[−] for
both types and terms, i.e. if f ∶ ∆ → Γ then −[f] ∶ Ty(Γ) → Ty(∆) and for every
A ∈ Ty(Γ) we have −[f] ∶ (Γ ⊢ A) → (∆ ⊢ A[f]).

• For each object Γ in C and A ∈ Ty(Γ) an object Γ ⋅A in C, the context comprehension
of Γ and A, together with a morphism p(A) ∶ Γ ⋅A→ Γ (the first projection) and a
term qA ∈ (Γ ⋅A ⊢ A[p(A)]) (the second projection) with the following universal
property: for each f ∶ ∆→ Γ and M ∈ (∆ ⊢ A[f]) there exists a unique morphism

66

4.2. A framework for generic elimination rules

θ = ⟨f,M⟩A ∶ ∆ → Γ ⋅A such that p(A) ○ θ = f and qA[θ] =M . We write p and q
for p(A) and qA respectively if A can be inferred from context. ∎

We note in passing that Type Theory can be interpreted in a Category with Families
by interpreting contexts as objects in C, types in context Γ as elements of Ty(Γ) and
terms of type σ in context Γ as elements of (Γ ⊢ σ). That F ∶ Cop → Fam(Set) is
a functor corresponds to substitution in types and terms. The comprehension Γ ⋅ σ
models the extension of the context Γ with a fresh variable of type σ, with weakening
−[p] ∶ Ty(Γ) → Ty(γ ⋅ σ). The fresh variable is available as the term q ∈ (Γ ⋅ σ ⊢ σ[p(σ)])
in the extended context, with (weakened) type σ.

Example 4.10 (Set as a CwF) The category of sets becomes a Category with Families if
we define3

Ty(Γ) = {A ∣ A ∶ Γ→ Set} (Γ ⊢ A) = ∏
γ∈Γ

A(γ)

For f ∶ ∆→ Γ, A ∶ Ty(Γ), h ∶ (Γ ⊢ A), we define

A[f] ∶ Ty(∆) = {B ∣ B ∶ ∆→ Set}
A[f] = A ○ f

h[f] ∶ (∆ ⊢ A[f]) = ∏
δ∈∆

A(f(δ))

h[f] = h ○ f

We define the context comprehension of Γ ∶ Set and A ∶ Γ → Set as Γ ⋅A = ∑γ∈ΓA(γ).
There are projections

p(A) ∶ ∑
γ∈Γ

A(γ) → Γ

p(A)(⟨γ, s⟩) = γ

qA ∈ (Γ ⋅A ⊢ A[p(A)]) = ∏
⟨γ,s⟩∈Γ⋅A

A(γ)

qA(⟨γ, s⟩) = s

Finally, given f ∶ ∆→ Γ and M ∈ (∆ ⊢ A[f]) = ∏δ∈∆A(f(δ)), we define

θ = ⟨f,M⟩A ∶ ∆→ Γ ⋅A

by θ(δ) = ⟨f(δ),M(δ)⟩. We then have p(A) ○ θ = f and qA[θ] = M , and any other
function satisfying these equations must be extensionally equal to θ, hence θ is unique.

∎

Comparing our list of requirements from the beginning of the Section with Defini-
tion 4.9, we think of a Category with Families C in the following way:

(i) We model data types and non-dependent functions as objects and morphisms in
C.

(ii) We model predicates on X as elements of Ty(X).
3 For size reasons, we should restrict Ty(Γ) to Γ-indexed families of small sets, that is, type-theoretically,

use a universe (U,T) and define Ty(Γ) = {A ∣ A ∶ Γ→ U}, and accordingly (Γ ⊢ A) = ∏γ∈Γ T (A(γ))).

67

4. A categorical characterisation

(iii) We model predicate comprehension ΣXP as context comprehension X ⋅ P .

(iv) We model dependent functions f ∶ ΠXP as elements f ∶ (X ⊢ P).

Note that we are not working in the model of type theory that the Category with
Families describes. Instead we are shifting everything one level: contexts become types,
types become type families. The terminal object in C (normally representing the empty
context) plays less of a rôle for our purposes. In Example 4.10, we see how this perfectly
matches the setting of ordinary inductive definitions. This is true also for e.g. indexed
inductive definitions and, of course, inductive-inductive definitions.

We will repeatedly use the following lemma when working with Categories with
Families.

Lemma 4.11

(i) Let f ∶ ∆→ Γ, M ∈ (∆ ⊢ A[f]), h ∶ Θ→∆. Then ⟨f,M⟩A ○ h = ⟨f ○ h,M[h]⟩A[f].

(ii) For every M ∈ (Γ ⊢ A), there is M ∶ Γ → Γ ⋅A such that p(A) ○M = id and
qA[M] =M .

Proof.

(i) ⟨f,M⟩σ ○ h satisfies the universal property for f ○ h and M[h].

(ii) There is no choice but to define M ∶= ⟨id,M⟩A.

4.2.2 A generic induction hypothesis type

In the axiomatisation of the elimination rules in Section 3.2.5, we defined types IHA,
IHB of induction hypothesis for the step functions of the eliminators. Our goal in this
section is to come up with an abstract counterpart of the induction hypothesis type in
the Categories with Families framework. In fact, the elimination rules we model will
turn out to be the general elimination rules, and not just the simple ones discussed
in Section 3.2.5.2. But first, let us take a step back and consider an eliminator for an
inductive definition, i.e. for an F -algebra (A,f) where F ∶ Set→ Set. Such an eliminator
is of the form

P ∶ A→ Set stepc ∶ (x ∶ F (A)) → ◻F (P,x) → P (c(x))
elimF (P, stepc) ∶ (x ∶ A) → P (x)

where we have written ◻F (P) ∶ F (A) → Set for the type of inductive hypothesis with
respect to P ; we have used the notation ◻ from modal logic, since ◻F (P,x) consists
of proofs that P holds at all F -substructures of x. The rule says that if we can prove
that P (y) holds for elements y = c(x) constructed with the constructor c (given that it
already holds for the subelements of x by the induction hypothesis), then it holds for
all elements of A.

68

4.2. A framework for generic elimination rules

We also expect a corresponding computation rule which tells us how elimF (P, stepc)
behaves when applied to canonical elements:

elimF (P, stepc, c(x)) = stepc(x,F (P, elim(P, stepc), x)) .

Here, F (P) ∶ (f ∶ (x ∶ A) → P (x)) → (x ∶ F (A)) → ◻F (P,x) takes care of recursive calls.
We will discuss F in more detail in Section 4.2.3.

Example 4.12 Let F (X) = 1+X , i.e. F is the functor whose initial algebra is (N, [0, suc]).
The type of induction hypothesis ◻λX.1+X should then satisfy

◻λX.1+X(P, inl(⋆)) ≅ 1 ◻λX.1+X (P, inr(n)) ≅ P (n)

so that the eliminator for (N, [0, suc]) becomes

P ∶ N→ Set
step0 ∶ 1→ P (0)

stepsuc ∶ (n ∶ N) → P (n) → P (suc(n))
elim1+X(P, step0, stepsuc) ∶ (x ∶ N) → P (x) ∎

For polynomial functors F , ◻F can be defined inductively over the structure of F as
is given in e.g. Dybjer and Setzer [2003]; Hermida and Jacobs [1998]. However, ◻F and
F can be defined for any functor F ∶ Set→ Set by defining

◻F (P,x) ∶= {y ∶ F (Σ z ∶A.P (z)) ∣ F (π0)(y) = x}
F (P, stepc, x) ∶= ⟨F (stepc)(x), refl⟩ ,

(4.2)

where we have used the notation stepc ∶= λy. ⟨y, stepc(y)⟩. Returning to Example 4.12,
we see that indeed ◻λX.1+X(P, inl(⋆)) ≅ 1 and ◻λX. .1+X(P, inr(n)) ≅ P (n).

Lemma 4.13 Let F ∶ Set→ Set and let ◻F and F be defined as in (4.2).

(i) There is an isomorphism ϕ ∶ F (Σ A B) ≅Ð→ Σ F (A) (◻F (B)) with π0 ○ ϕ = F (π0).

(ii) For g ∶ (x ∶ A) → B(x), we have F (g) = ϕ ○ F (g).

Proof.

(i) Define ϕ with type as above and ψ ∶ Σ (FA) (◻FB)) → F (Σ A B) by

ϕ(y) = ⟨F (π0)(y), ⟨y, refl⟩⟩ , ψ(⟨x, ⟨y, p⟩⟩) = y.

Thenψ(ϕ(y)) = ψ(⟨F (π0) y, ⟨y, refl⟩⟩) = y and for every ⟨x, ⟨y, p⟩⟩ ∶ Σ (FA) (◻FB)),
we have x = F (π0)(y) by p and p = refl by proof irrelevance, so that

ϕ(ψ(⟨x, ⟨y, p⟩⟩)) = ϕ(y) = ⟨F (π0)(y), ⟨y, refl⟩⟩ = ⟨x, ⟨y, p⟩⟩ .

Hence F (Σ A B) ≅ Σ (FA) (◻FB)).

69

4. A categorical characterisation

(ii) By definition, F (g)(x) = ⟨x, ⟨F (g)(x), refl⟩⟩, and also

ϕ(F (g)(x)) = ⟨F (π0)(F (g)(x)), ⟨F (g)(x), refl⟩⟩
= ⟨F (id)(x), ⟨F (g)(x), refl⟩⟩
= ⟨x, ⟨F (g)(x), refl⟩⟩

since π0 ○ g = id. Hence F (g) = ϕ ○ F (g).

In fact, this property determines ◻F up to natural isomorphism:

Proposition 4.14 Let XF ∶ (P ∶ A → Set) → F (A) → Set. Then XF (P) ≅ ◻F (P) if and
only if there is

ϕ ∶ F (Σ A P) ≅Ð→ Σ (FA) (XFP) (∗◻)

such that
π0 ○ ϕ = F (π0) . (∗∗◻)

Proof. (⇒) Let ψx ∶ ◻F (P,x)
≅Ð→XF (P,x). From Lemma 4.13, we know that there is an

isomorphism ϕ0 ∶ F (Σ A P) → Σ (FA) (◻FP) satisfying (∗∗◻). Define ϕ ∶= [id, ψ] ○ ϕ0.
Then ϕ is an isomorphism (with inverse ϕ−1

0 ○ [id, ψ−1]) and the following diagram
commutes:

F (Σ A P) ϕ0 //

F (π0) ((

Σ (F A) (◻FP) [id,ψ] //

π0

��

Σ (F A) (XP)

π0
uu

F A

which shows that (∗∗◻) holds.
(⇐) Assume (∗◻) and (∗∗◻) holds. Then

X(P,x) ≅ {z ∶ Σ F (A) (X(P)) ∣ π0(z) = x}
≅ {y ∶ F (Σ A P) ∣ π0(ϕ(y)) = x}
= {y ∶ F (Σ A P) ∣ F (π0)(y) = x} = ◻F (P,x) .

Thus, in the general framework, we will define◻F to be any type having this property,
after having done the necessary translation to the language of Categories with Families:

Definition 4.15 Let F ∶ C → D be a functor between Categories with Families. We
say that ◻F exists, if there for each object X in C and P ∈ TyC(X) exists ◻F (X,P) ∈
TyD(F (X)) such that there is an isomorphism

ϕ ∶ F (X ⋅ P) → F (X) ⋅ ◻F (X,P)

with p ○ ϕ = F (p). ∎

Remark 4.16 (CwF pseudo morphisms) Dybjer [1996] defines a morphism (F,σ) be-
tween Categories with Families C and D to be a functor F ∶ C → D together with a

70

4.2. A framework for generic elimination rules

natural transformation σ ∶ (TyC, (⊢)C) → (TyD, (⊢)D) ○ F such that the terminal object
and context comprehensions are preserved. Dybjer [1996] requires preservation on
the nose, whereas Clairambault and Dybjer [2011] introduces pseudo CwF morphisms
where the structure is preserved only up to isomorphism.

In a sense, Definition 4.15 is a generalisation of this concept: If (F,σ) is a pseudo CwF
morphism, then ◻F exists, and is given by the first component of σ. Our perspective
is slightly different: we consider F ∶ C → D to be fixed (as the pattern functor for
the data type we are interested in), and ask that there is a natural transformation
◻F ∶ TyC → TyD ○ F such that context comprehensions are preserved. Many functors F
that we will consider will not preserve terminal objects, and we do not need them to.
We will also see no need to require ◻F to act on (Γ ⊢ A).

If ◻F exists, then ◻F is unique up to isomorphism also in the general framework; for
this to make sense, we need to make a category out of Ty(Γ). The following construction
is due to Clairambault [2006, Section 4.1].

Definition 4.17 Let Γ be an object in the Category with Families C. The category Ty(Γ)
has as objects the elements from Ty(Γ), and

HomTy(Γ)(A,B) = (Γ ⋅A ⊢ B[p]) .

Composition is given by g ○ f ∶= g[⟨p, f⟩] (with identity q). ∎

We can easily check that composition is associative

(g ○ f) ○ h = g[⟨p, f⟩][⟨p, h⟩]
= g[⟨p ○ ⟨p, h⟩, f[⟨p, h⟩]⟩]
= g[⟨p, f[⟨p, h⟩]⟩] = g ○ (f ○ h)

and q really is an identity:

q ○ f = q[⟨p, f⟩] = f g ○ q = g[⟨p,q⟩] = g[id] = g
Proposition 4.18 Suppose that ◻F (Γ,A) and ◻′F (Γ,A) with isomorphisms ϕ and ϕ′ as
in Definition 4.15 are given. Then they are isomorphic as objects in Ty(F (Γ)).

Proof. Define
f ∈ (F (Γ) ⋅ ◻′F (Γ,A) ⊢ ◻F (Γ,A)[p])

and
g ∈ (F (Γ) ⋅ ◻F (Γ,A) ⊢ ◻′F (Γ,A)[p])

by f = q[ϕ ○ϕ′−1] and g = q[ϕ′ ○ϕ−1]. Both terms have the right type since p ○ϕ ○ϕ′−1 =
F (p) ○ ϕ′−1 = p (and similarly for g). We calculate

f ○ g = f[⟨p, g⟩] = q[ϕ ○ ϕ′−1 ○ ⟨p,q[ϕ′ ○ ϕ−1]⟩]
= q[ϕ ○ ϕ′−1 ○ ⟨p ○ ϕ ○ ϕ′−1,q[ϕ′ ○ ϕ−1]⟩] since p = p ○ ϕ ○ ϕ′−1

= q[ϕ ○ ϕ′−1 ○ ⟨p,q⟩ ○ ϕ′ ○ ϕ−1]
= q[id] = q = idTy(F (Γ))

71

4. A categorical characterisation

and similarly for g ○ f . Thus ◻F (Γ,A) and ◻′F (Γ,A) are isomorphic.

We can give an alternative proof by noting that there is another characterisation of
the morphisms of TyC(Γ), which is due to Clairambault and Dybjer [2011]:

Lemma 4.19 TyC(Γ) is isomorphic to the category Ty′C(Γ) with the same objects, but
where the morphisms from A to B are morphisms f ∶ Γ ⋅A → Γ ⋅B in C such that
p ○ f = p.

Proof. Define F ∶ TyC(Γ) → Ty′C(Γ) and G ∶ Ty′C(Γ) → TyC(Γ) to be the identities on
objects. For a morphisms M ∈ (Γ ⋅A ⊢ B[p]) and f ∶ Γ ⋅A → Γ ⋅B, let F (M) = ⟨p,M⟩
and G(f) = q[f]. Note that p ○ F (M) = p ○ ⟨p,M⟩ = p. We calculate:

F (G(f)) = F (q[f]) = ⟨p,q[f]⟩ = ⟨p ○ f,q[f]⟩ = ⟨p,q⟩ ○ f = f

G(F (M)) = G(⟨p,M⟩) = v[⟨p,M⟩] =M

Thus, ϕ ○ ϕ′−1 ∶ F (Γ) ⋅ ◻′F (Γ,A) → F (Γ) ⋅ ◻F (Γ,A) is obviously an isomorphism in
Ty′C(F (Γ)) (in the proof of Proposition 4.18, we proved that p ○ ϕ ○ ϕ′−1 = p). Hence
◻F (Γ,A) and ◻′F (Γ,A) are isomorphic also in TyC(F (Γ)).

We will soon see in Section 4.2.2.1 that ◻F often exists for general reasons. But first,
let us define a generic elimination rule for a data type in the general Categories with
Families framework, given that ◻F exists.

Definition 4.20 (Generic elimination rule) Let F , G ∶ C → D be functors between
Categories with Families such that ◻F and ◻G exists. Let (X, in) be an (F,G)-dialgebra.
The generic elimination rule for (X, in) says that there is a term elim as follows:

P ∈ Ty(X) stepin ∈ (F (X) ⋅ ◻F (P) ⊢ ◻G(P)[in ○ p])
elim(P, stepin) ∈ (X ⊢ P)

∎

Note that (X, in) need not be an initial object in Dialg(F,G) for this definition to
make sense – just as it makes sense to ask if e.g. R satisfies the induction principle for
natural numbers (the answer is of course no). We will show in Section 4.3 that in fact
the elimination rule is valid if and only if (X, in) is initial.

The reader might be puzzled by the fact that G and ◻G appear in the type of stepin,
instead of e.g. (warning: this is wrong!)

“step′in ∈ (F (X) ⋅ ◻F (P) ⊢ P [in ○ p])”

which would be the Categories with Families representation of a dependent function
(warning: still wrong!)

“step′in ∶ ((x, x̃) ∶ Σ F (X) ◻F (P)) → P (in(x))” .

Looking closer at the types, we see that this does not make sense. The predicate
P ∶ TyC(X) lives in the Category with Families C, but ◻F (P) ∶ TyD(F (X)) lives in the

72

4.2. A framework for generic elimination rules

Category with Families D – we cannot have a “function” whose domain and codomain
live in different categories. We need a way to lift P from C to D, but that is exactly what
the predicate lifting ◻G does. Hence

stepin ∈ (F (X) ⋅ ◻F (P) ⊢ ◻G(P)[in ○ p])

i.e., in type-theoretical notation,

stepin ∶ ((x, x̃) ∶ Σ F (X) ◻F (P)) → ◻G(P)(in(x)) .

The type ◻G(P) can be seen as a lifting of P from types to predicates; in fact, this is
what ◻G is usually called in the fibrational setting [Hermida and Jacobs, 1998]. In our
applications, G will “morally” be the identity, which implies that ◻G will be so as well.

Lemma 4.21 If G ∶ C → D is the identity on objects and G preserves context compre-
hensions and projections, i.e. G(Γ ⋅C A) = Γ ⋅D A and G(p) = p, then ◻G exists, and
◻G(P) = P (with ϕ = id).

Proof. Note that we have ◻G(P) ∈ Ty(Γ) = Ty(G(Γ)). Since G(Γ ⋅A) = Γ ⋅A and
G(Γ) = Γ, the identity morphism is an isomorphism between G(Γ ⋅A) and G(Γ) ⋅A.
Furthermore, since G(p) = p, we trivially have p ○ id = G(p).

In particular, if we choose G = Id ∶ C→ C and consider ordinary F -algebras for an
endofunctor F ∶ C→ C, the elimination rule becomes

P ∈ Ty(X) stepin ∈ (F (X) ⋅ ◻F (P) ⊢ P [in ○ p])
elim(P, stepin) ∈ (X ⊢ P)

4.2.2.1 Sufficient conditions for ◻F to exist

We now investigate conditions for ◻F to exist. As we will see, mild conditions on the
Categories with Families involved will suffice. A Category with Families is said to
support (extensional) identity types and Σ-types if it is closed under the following
constructions respectively:

Definition 4.22 Let C be a Category with Families.

(i) C supports (extensional) identity types if

• A ∈ Ty(Γ) and a, a′ ∈ (Γ ⊢ A) implies that there is IA(a, a′) ∈ Ty(Γ).
• a ∈ (Γ ⊢ A) implies that there is rA,a ∶ (Γ, IA(a ⊢ a)).
• c ∶ (Γ, IA(a ⊢ a′)) implies that a = a′ and c = rA,a.
• these constructions are stable under substitution, i.e.

IA(a, a′)[f] = IA[f](a[f], a′[f])
rA,a[f] = rA[f],a[f]

73

4. A categorical characterisation

(ii) C supports Σ-types if

• A ∈ Ty(Γ) and B ∈ Ty(Γ ⋅A) implies that there is Σ(A,B) ∈ Ty(Γ).
• a ∈ (Γ ⊢ A) and b ∈ (Γ ⊢ B[a]) implies that there is p(a, b) ∶ (Γ ⊢ Σ(A,B)).
• c ∶ (Γ,Σ(A ⊢ B)) implies that there are π1(c) ∈ (Γ ⊢ A) and π2(c) ∈ (Γ ⊢
B[π1(c)]) such that

π1(p(a, b)) = a π2(p(a, b)) = b p(π1(c), π2(c)) = c

• these constructions are stable under substitution, i.e.

Σ(A,B)[f] = Σ(A[f],B[⟨f ○ p,q⟩])
p(a, b)[f] = p(a[f], b[f])
π1(c)[f] = π1(c[f])
π2(c)[f] = π2(c[f]) ∎

Both identity types and Σ-types are of course well-known from Type Theory. Hof-
mann [1997] shows how they can be interpreted in Categories with Families that support
them. We are interested in slightly less well-known constructions, namely constant
families and inverse image types.

Definition 4.23 A CwF C supports constant family types if the following data are given:

• For each Γ in C, there is a type qΓ∆ ∈ Ty(∆) for all ∆ in C such that qΓ∆[g] = qΓB
whenever g ∶ B →∆. (We will usually omit the subscript ∆.)

• There is an isomorphism ⋅↓ ∶ (B ⊢ qΓ) → Hom(B,Γ) with inverse ⋅↑ ∶ Hom(B,Γ) →
(B ⊢ qΓ) such that M ↓ ○ g =M[g]↓. ∎

In the CwF Set (see Example 4.10), constant family types are simply constant families
qΓ(x) = Γ. The isomorphism (B ⊢ qΓ) ≅ Hom(B,Γ) relates “non-dependant dependant”
functions and ordinary (non-dependent) morphisms. Note that the equation M ↓ ○ g =
M[g]↓ equivalently can be written

f ○ g↑ = f ↑[g]

by considering f =M ↓ and applying ⋅↑ to both sides of the equation.
Clairambault and Dybjer [2011] defines a similar notion of democracy for a CwF; a

CwF is democratic if each context is represented by a type. In detail:

Definition 4.24 (Clairambault and Dybjer [2011, Def. 6]) A CwF C is democratic if for
each object Γ of C there is Γ ∈ Ty(1C) and an isomorphism γΓ ∶ Γ→ 1C ⋅ Γ. ∎

Reassuringly, constant families and democracy are interderivable.

Proposition 4.25 A CwF C supports constant families if and only if it is democratic.

74

4.2. A framework for generic elimination rules

Proof. (⇒) Assume C supports constant families. Define Γ ∶= qΓ1C and γΓ = ⟨!Γ, id↑⟩ ∶ Γ→
1C ⋅ Γ with inverse γ−1

Γ = q↓ ∶ 1C ⋅ Γ→ Γ. Of course, we have to check that γΓ and γ−1
Γ are

really inverse to each other:

γ−1
Γ ○ γΓ = q↓ ○ ⟨!Γ, id↑⟩ = (q[⟨!Γ, id↑⟩])↓ = (id↑)↓ = id

In the other direction, we have

γΓ ○ γ−1
Γ = ⟨!Γ, id↑⟩ ○ q↓ = ⟨!Γ ○ q↓, id↑[q↓]⟩ = ⟨!

1C⋅qΓ, (id ○ q↓)↑⟩ = ⟨p, (q↓)↑⟩ = id

Here, we use that p(qΓ) ∶ 1C ⋅ qΓ→ 1C must be equal to !
1C⋅qΓ ∶ 1C ⋅

qΓ→ 1C by the unique-
ness of !

1C.qΓ
.

(⇐) Assume C is democratic. Define qΓ∆ ∶= Γ[!∆]. Then

qΓ∆[g] = Γ[!∆ ○ g] = Γ[!B] = qΓB

by the uniqueness of !B . Define M ↓ ∶= γ−1
Γ ○ ⟨!B,M⟩ and f ↑ ∶= q[γΓ ○ f]. Then

(M ↓)↑ = q[γΓ ○ γ−1
Γ ○ ⟨!B,M⟩] = q[⟨!B,M⟩] =M

and using that p ○ γΓ ○ f ∶ B → 1C is equal to !B for every f ∶ B → Γ, we have

(f ↑)↓ = γ−1
Γ ○ ⟨!B,q[γΓ ○ f]⟩

= γ−1
Γ ○ ⟨p ○ γΓ ○ f,q[γΓ ○ f]⟩

= γ−1
Γ ○ ⟨p,q⟩ ○ γΓ ○ f = f .

Finally, we have

M ↓ ○ g = γ−1
Γ ○ ⟨!B,M⟩ ○ g

= γ−1
Γ ○ ⟨!B ○ g,M[g]⟩

= γ−1
Γ ○ ⟨!∆,M[g]⟩

=M[g]↓ .

The second “type former” we need are inverse image types. These correspond to
an indexed inductive definition in Type Theory; for f ∶ A→ B, the inverse image type
InvImf ∶ B → Set is given by the constructor

im ∶ (x ∶ A) → InvImf(f(x)) ,

i.e. if x ∶ InvImf(b) then f(x) = b. Alternatively, the inverse image of f ∶ A → B can be
defined as

InvImf(b) ≅ (Σx ∶ A)(f(x) ≡B b) .

if we translate this to CwF combinators, we can define the inverse image f∗ of f as

f∗ ∶= Σ(|A, I
|B
(f ↑[q↓],p↑)) .

75

4. A categorical characterisation

This makes sense whenever the CwF has Σ-types, identity types and constant families.
We can define the “constructor” imf ∶ A → B ⋅ f∗ by imf ∶= ⟨f, p(id↑, r

|B,f ↑
)⟩ since

(checking that r
|B,f ↑

has the right type)

(A ⊢ I
|B
(f ↑[q↓],p↑)[⟨f ○ p,q⟩][⟨id, id↑⟩]) = (A ⊢ I

|B
(f ↑[q↓],p↑)[⟨f, id↑⟩])

= (A ⊢ I
|B
(f ↑[q↓ ○ ⟨f, id↑⟩],p↑[⟨f, id↑⟩]))

= (A ⊢ I
|B
(f ↑[(id↑)↓],p↑[⟨f, id↑⟩]))

= (A ⊢ I
|B
(f ↑, f ↑)) .

We are interested in inverse image types, since they give us a way to construct ◻F .
Let us first prove a preliminary lemma:

Lemma 4.26 (Clairambault and Dybjer [2011, Lemma 25]) Let C be a CwF with inverse
image types. For all f ∶ A→ B in C, we have an isomorphism ϕ ∶ B ⋅ f∗ → A in C such
that the following diagram commutes:

B ⋅ f∗
ϕ

,,

p
""

A
ϕ−1

mm

f
xx

B

Proof. The isomorphism ϕ can be defined as ϕ ∶= π1(q)↓ with inverse ϕ−1 ∶= imf =
⟨f, p(id↑, r

|B,f ↑
)⟩. We then immediately have

ϕ ○ ϕ−1 = π1(q)↓ ○ ⟨f, p(id↑, r
|B,f ↑

)⟩ = π1(q[⟨f, p(id↑, r
|B,f ↑

)⟩])↓ = (id↑)↓ = id

In the other direction, we have

ϕ−1 ○ ϕ = ⟨f, p(id↑, r
|B,f ↑

)⟩ ○ π1(q)↓

= ⟨f ○ π1(q)↓, p(id↑, r
|B,f ↑

)[π1(q)↓]⟩
= ⟨f ○ π1(q)↓, p(π1(q), r)⟩

If we can prove f ○ π1(q)↓ = p and r = π2(q), we are done, since then

ϕ−1 ○ ϕ = ⟨p, p(π1(q), π2(q))⟩ = ⟨p,q⟩ = id

by surjective pairing for Σ-types. But π2(q) ∈ (B ⋅ f∗ ⊢ I
|B
(f ↑[q↓],p↑)[⟨p, π1(q)⟩]),

hence by the extensionality of identity types

f ↑[π1(q)↓] = p↑

or equivalently f ○ π1(q)↓ = p. Furthermore, indeed π2(q) = r by the uniqueness of
identity proofs.

Finally, p ○ ϕ−1 = p ○ ⟨f, p(id↑, r
|B,f ↑

)⟩ = f , so the diagram commutes.

76

4.2. A framework for generic elimination rules

Proposition 4.27 Let F ∶ C → D with D a CwF with inverse image types. Then
◻F (Γ, σ) ≅ F (p)∗.

Proof. By Lemma 4.26, F (p)∗ satisfies the universal property of ◻F (Γ, σ).

By reformulating a theorem due to Hofmann [1994], who in turn adapted a con-
struction due to Bénabou [1985], Clairambault and Dybjer [2011] proves:

Theorem 4.28 (Clairambault and Dybjer [2011, Lemma 18]) Let C be a category with
finite limits. Then C can be extended to a CwF with constant families, extensional
identity types and Σ-types.

Hence, in order to see if a category C is a Category with Families or not, we only
need to check if it has finite limits. For example, we immediately see that all SetI for a
fixed set I is are CwFs, since limits in functor categories are calculated pointwise. SetI

is the Category with Families which correspond to indexed inductive definitions.
Putting together the results from this section, we get:

Corollary 4.29 Let D be a category with finite limits, C a CwF. Then ◻F exists for any
F ∶ C→ D.

4.2.3 Generic computation rules

So far, we have treated the induction hypothesis involved in the elimination rules. This
is enough for a static view of data types and induction, but not for us: we want our
proofs to compute. As briefly touched on at the beginning of Section 4.2.2, in the case
of ordinary inductive types, modelled as initial algebras of endofunctors on Set, we
expect a computation rule of the form

elimF (P, stepc, c(x)) = stepc(x,F (elimF (P, stepc), x)) .

where F ∶ (f ∶ (x ∶X) → P (x)) → (x ∶ F (X)) → ◻F (P,x) is a kind of “dependent map
function” that takes care of recursive calls by applying its input f in a way compatible
with the structure dictated by F . The function F is like the action of F on morphisms,
were it not for the fact that the input f ∶ (x ∶X) → P (x) and output F (f) ∶ (x ∶ F (X)) →
◻F (P,x) are dependent functions, hence not morphisms in Set. However, if we make f
non-dependent by considering f = λx. ⟨x, f(x)⟩ ∶ X → Σ X P , then use F (f) and the
isomorphism ϕ ∶ F (ΣX P) → Σ F (X) ◻F (P), and take the second component, we end
up with a dependent function of the right type. Since π0 ○ ϕ = F (π0) by Lemma 4.13,
π0 ○ ϕ ○ F (f) = F (π0 ○ f) = F (id) = id, and we can define

F (f) ∶= π1 ○ ϕ ○ F (f) ∶ (x ∶ F (A)) → ◻F (P, (π0 ○ ϕ ○ F (f))(x)) . (4.3)

Example 4.30 (Computation rules for the type of natural numbers) Recall from Exam-
ple 4.12 that the induction hypothesis type ◻λX.1+X for the natural numbers satisfy

◻λX.1+X(P, inl(⋆)) = 1 ◻λX.1+X (P, inr(n)) = P (n) .

77

4. A categorical characterisation

By the definition above, λX.1 +X(P) ∶ ((x ∶ Y) → P (x)) → (x ∶ 1+Y) → ◻λX.1+X(P,x)
satisfies

λX.1 +X(f, inl(⋆)) = ⋆
λX.1 +X(f, inr(n)) = f(n)

Indeed, we then end up with the usual computation rules, after we have decomposed
step[0,suc] ∶ (x ∶ 1 + N) → ◻λX.1+X(P,x) → P (x) into step[0,suc] = [step0, stepsuc] where
step0 ∶ 1→ P (0) and stepsuc ∶ (n ∶ N) → P (n) → P (suc(n)):

elimλX.1+X(P, [step0, stepsuc],0) = step0(⋆)
elimλX.1+X(P, [step0, stepsuc], suc(n)) = stepsuc(n, elimλX.1+X(P, [step0, stepsuc], n)) ∎

We now generalise F (P) ∶ (f ∶ (x ∶ X) → P (x)) → (x ∶ F (X)) → ◻F (P,x) to the
generic setting, by replacing predicates with types and dependent function spaces with
terms from the category with families.

Definition 4.31 Let F ∶ C→ D be a functor between Categories with Families such that
◻F exists. For each object X in C and P ∈ Ty(X) we define

F ∶ (X ⊢ P) → (F (X) ⊢ ◻F (P))

by
F (f) = q[ϕF ○ F (f)] ∎

We see that F indeed coincides with the definition in (4.3) for the CwF Set.

Lemma 4.32 Let F ∶ C → D be a functor between Categories with Families such that
◻F exists.

(i) Id = Id.

(ii) F (f) = ϕF ○ F (f) for all f ∈ (X ⊢ P).

Proof.

(i) Id(f) = q[ϕId ○ Id(f)] = q[f] = f .

(ii) We calculate

F (f) = q[ϕF ○ F (f)]
= ⟨id,q[ϕF ○ F (f)]⟩
= ⟨F (p ○ f),q[ϕF ○ F (f)]⟩
= ⟨p ○ ϕF ○ F (f),q[ϕF ○ F (f)]⟩
= ϕF ○ F (f)

78

4.2. A framework for generic elimination rules

We now state the generic computation rule:

Definition 4.33 Let F,G ∶ C → D be functors between Categories with Families such
that ◻F and ◻G exist. Let (X, in) be an (F,G)-dialgebra. The computation rule associated
with an elimination rule

P ∈ Ty(X) stepin ∈ (F (X) ⋅ ◻F (P) ⊢ ◻G(P)[in ○ p])
elim(P, stepin) ∈ (X ⊢ P)

says that
G(elim(P, stepin))[in] = stepin[F (elim(P, stepin))] ∎

Notice the similarity with a morphism h ∶ (X, in) → (P, step) in Dialg(F,G), which
is a morphism h ∶X → P such that G(h) ○ in = step ○ F (h).4

Example 4.34 (The elimination rule for F -algebras on Set) Let F ∶ Set → Set be an
endofunctor and Id ∶ Set→ Set the identity functor. For (F, Id)-dialgebras (i.e. ordinary
F -algebras) the elimination rule becomes (after currying stepin)

P ∶X → Set stepin ∶ (x ∶ F (X)) → ◻F (P,x) → P (in(x))
elim(P, stepin) ∶ (x ∶X) → P (x)

as we are used to. The computation rule becomes

elim(P, stepin, in(x)) = stepin(x,F (P, elim(P, stepin), x))

for x ∶ F (X). ∎

4.2.4 The generic eliminator for an inductive-inductive definition

Recall from Section 4.1.1 that inductive-inductive definitions are represented by functors
Arg ∶ Dialg(ArgA, U) → Fam(Set). We want to show that ◻Arg exists. In order to apply
Corollary 4.29, we need to check that Dialg(ArgA, U) is a Category with Families and
that Fam(Set) has finite limits. The second requirement is easily taken care of since Set
is complete:

Proposition 4.35 If C has finite limits, then so does FamC and the index set functor
U ∶ FamC→ Set preserves them.

Proof. It is enough for FamC to have a terminal object and pullbacks [Mac Lane, 1998].
The terminal object in FamC is (1, λ .1C). We construct the pullback of (f, g) ∶ (A,B) →
(C,D) and (f ′, g′) ∶ (A′,B′) → (C,D) as in

(A,B) ×(C,D) (A′,B′) //

��

(A′,B′)

(f ′,g′)
��

(A,B)
(f,g)

// (C,D)
4We have used the unorthodox variable names (P, step) for a dialgebra here to show the similarity

with the situation above.

79

4. A categorical characterisation

by (A,B) ×(C,D) (A′,B′) ∶= (A ×C A′, λ⟨x, y⟩.B(x) ×D(f(x)) B
′(y)) where A ×C A′ =

{⟨x, y⟩ ∶ A ×A′ ∣ f(x) = f ′(y)} is the usual construction of the pullback of f and f ′ in
Set, and B(x) ×D(f(x)) B

′(y) is the pullback of gx ∶ B(x) → D(f(x)) and g′y ∶ B′(y) →
D(f ′(y)) (with common codomain, since f(x) = f ′(y)) in C. The projections are
constructed from the projections in Set and C.

In particular, by Theorem 4.28, this shows that Fam(Set) can be extended to a
Category with Families. For later reference, we can give a Categories with Families
structure for Fam(Set) explicitly:

Example 4.36 (Fam(Set) as a CwF) The category Fam(Set) can be made into a Category
with Families if we define

Ty(X,Y) = {(A,B) ∣ A ∶X → Set,B ∶ (x ∶X) → Y (x) → A(x) → Set}
((X,Y) ⊢ (A,B)) = {(h, k) ∣ h ∶ ∏

x∈X
A(x), k ∶ ∏

x∈X,y∈Y (x)
B(x, y, h(x))}

For (f, g) ∶ (X,Y) → (X ′, Y ′), we define

(A,B)[f, g] ∶ Ty(X,Y) = {(A,B) ∣ A ∶X → Set,B ∶ (x ∶X) → Y (x) → A(x) → Set}
(A,B)[f, g] = (A,B) ○ (f, g) = (A ○ f, λx. λy.B(f(x), g(x, y))
(h, k)[f, g] ∶ ((X,Y) ⊢ (A,B)[f, g])
(h, k)[f, g] = (h, k) ○ (f, g) = (h ○ f, λx. λy. k(f(x), g(x, y)))

The context comprehension can be given by

(X,Y) ⋅ (A,B) = (∑
x∈X

A(x), λ⟨x, a⟩. ∑
y∈Y (x)

B(x, y, a))

p(A,B) = (fst, λx. fst)
qA,B = (snd, λx. snd)

Given (f, g) ∶ (X ′, Y ′) → (X,Y) and (h, k) ∈ ((X ′, Y ′) ⊢ (A,B)[f, g]), we have

(θ,ψ) = ⟨(f, g), (h, k)⟩(A,B) ∶ (X ′, Y ′) → (X,Y) ⋅ (A,B)

defined as θ(x) = ⟨f(x), h(x)⟩ and ψ(x, y) = ⟨g(x, y), k(x, y)⟩. ∎

We now show that Dialg(ArgA, U) is a category with families. In fact, we show that
if C has finite limits and G ∶ C → D preserves them, then also Dialg(F,G) has finite
limits, and hence is a Category with Families by Theorem 4.28. The following is a
straightforward generalisation of the well-known corresponding folklore theorem for
the category of F -algebras, i.e. the case of G = Id ∶ C→ C.

Theorem 4.37 Let F,G ∶ C → D. The category Dialg(F,G) has finite limits if C does,
and G preserves them. The forgetful functor V ∶ Dialg(F,G) → C preserves finite limits.

80

4.2. A framework for generic elimination rules

Proof. Define 1Dialg(F,G) ∶= (1C, !F (1C)) where !F (1C) is the unique map F (1C) → 1D. For
any object (X,f), the unique morphism (X,f) → (1C, !F (1C)) is given by the unique
arrow !X from X to 1C in C, and the diagram

FX
f //

F (!X)
��

GX

G(!X)
��

F (1C)
!F (1C)

// G(1C) = 1D

commutes since both paths are arrows into 1D, hence equal.
We now construct the pullback of f ∶ (A,a) → (C, c) and g ∶ (B, b) → (C, c). Let

ψ ∶ G(A)×G(C)G(B) → G(A×CB) be the isomorphism that witnesses thatG preserves
pullbacks. The carrier and the projections of the pullback of f and g are inherited from
C. In detail, we construct the pullback as (A×CB,ψ ○⟨a○F (p), b○F (q)⟩) whereA×CB
is the pullback of f and g in C, with projections p ∶ A×C B → A and q ∶ A×C B → B, and
⟨−,−⟩ is the mediating morphism given by the universal property of G(A) ×G(C) G(B).
An easy diagram chase shows that all morphisms involved also are morphisms in
Dialg(F,G):

F (A ×C B)
ψ○⟨a○F (p),b○F (q)⟩

��
F (p)

��

F (q) // F (B)

b
�� F (g)

��
G(A ×C B)

G(p)

��

G(q)
// G(B)

G(g)

��

F (A)
a

��

F (f) // F (C)

c
��

G(A)
G(f)

// G(C)

Since Fam(Set) has finite limits and the index set functor U ∶ Fam(Set) → Set
preserves them by Proposition 4.35, we can apply Theorem 4.37 in conjunction with
Theorem 4.28 to conclude that Dialg(ArgA, U) is a Category with Families.

Furthermore, by Corollary 4.29, the induction hypothesis type ◻Arg exists for all
Arg ∶ Dialg(ArgA, U) → Fam(Set). Explicitly, it can be defined as follows.

Example 4.38 (◻Arg exist) We can decompose◻Arg = (◻ArgA
,◻ArgB

) into two components
with the following types:

◻ArgA
(P,Q) ∶ ArgA(A,B) → Set ,

◻ArgB
(P,Q) ∶ (stepc ∶ (x ∶ ArgA(A,B)) → ◻ArgA

(P,Q,x) → P (c(x))) →
(x ∶ ArgA(A,B)) → (y ∶ ArgB(A,B, c, x)) →
(x̃ ∶ ◻ArgA

(P,Q,x)) → Set

81

4. A categorical characterisation

with the following definitions

◻ArgA
(P,Q,x) ∶= {y ∶ ArgA((A,B) ⋅Fam(Set) (P,Q)) ∣ArgA(π0, π

′
0)(y) = x} ,

◻ArgB
(P,Q, stepc, x, y, x̃) ∶=

{z ∶ ArgB((ΣDialg(A,B, c) (P,Q, stepc)), x̃) ∣ ArgB(π0, π
′
0, x̃, z) = y} ,

Here,
(A,B) ⋅Fam(Set) (P,Q) = (Σ A P,λ⟨a, p⟩.Σb ∶B(a). Q(a, b, p))

and

(A,B, c) ⋅Dialg(ArgA,U) (P,Q, stepc) = ((A,B) ⋅Fam(Set) (P,Q), [c, stepc] ○ ϕArgA
)

∎

We know that Dialg(Arg, V) is a Category with Families by Theorem 4.37. However,
it is easy to see that EArg as a subcategory is closed under context comprehension
− ⋅ − and substitution −[−], i.e. if Γ ∶ EArg and σ ∶ Ty(EArg(Γ)), where EArg ∶ EArg ↪
Dialg(Arg, V) is the embedding given by the equaliser, then also Γ ⋅ σ is in EArg, and
similarly for substitution. Hence, EArg inherits a category with families structure from
Dialg(Arg, V):

Corollary 4.39 The category EArg is a Category with Families.

In general, an eliminator for (A,B, c, d) in EArg is a term of the form

P ∶ A→ Set
Q ∶ (x ∶ A) → B(x) → P (x) → Set

stepc ∶ (x ∶ ArgA(A,B)) → ◻ArgA
(P,Q,x) → P (c(x))

stepd ∶ (x ∶ ArgA(A,B)) → (y ∶ ArgB(A,B, c, x)) → (x̃ ∶ ◻ArgA
(P,Q,x))

→ ◻ArgB
(P,Q, c, stepc, x, y, x̃) → Q(c(x), d(x, y), stepc(x, x̃))

elimArgA
(P,Q, stepc, stepd) ∶ (x ∶ A) → P (x)

elimArgB
(P,Q, stepc, stepd) ∶ (x ∶ A) → (y ∶ B(x)) → Q(x, y, elimArgA

(P,Q, stepc, stepd, x))

with

elimArgA
(P,Q, stepc, stepd, c(x)) = stepc(x,ArgA

′)
elimArgB

(P,Q, stepc, stepd, c(x), d(x, y)) = stepd(x, y,ArgA
′
,ArgB

′)

where

ArgA
′ = ArgA(elimArgA

(P,Q, stepc, stepd), elimArgB
(P,Q, stepc, stepd), x)

ArgB
′ = ArgB(stepc, elimArgA

(P,Q, stepc, stepd), elimArgB
(P,Q, stepc, stepd), x, y) .

82

4.3. The equivalence between having an eliminator and being initial

Example 4.40 (The eliminator for sorted lists) Recall from Example 4.5 that sorted lists
were given by the functors ArgSList, Arg≤L

, where

ArgSList(A,B) = 1 + (Σn ∶N.Σ ` ∶A.B(n, `))

Thus, we see that e.g.

◻ArgSList(P,Q, inl(⋆)) = {y ∶ 1 + . . . ∣ (id + . . .)(y) = inl(⋆)} ≅ 1

◻ArgSList(P,Q, inr(⟨n, `, p⟩)) ≅
{y ∶ Σn′ ∶N.Σ ⟨`′, ̃̀⟩ ∶(ΣAP).Σp′ ∶B(n, `).Q(n′, `′, p′, ̃̀) ∣ Σ(id,Σ(π0, π

′
0))(y) = ⟨n, `, p⟩}

≅ Σ̃̀∶P (`).Q(n, `, p, ̃̀)

and similarly for ◻Arg≤L
, so that the eliminators are equivalent to

elimSortedList ∶ (P ∶ SortedList→ Set) →
(Q ∶ (n ∶ N) → (` ∶ SortedList) → n ≤L `→ P (`) → Set) →
(stepnil ∶ P (nil)) →
(stepcons ∶ (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `) → (̃̀∶ P (`))

→ Q(n, `, p, ̃̀) → P (cons(n, `, p))) →
(steptriv ∶ (n ∶ N) → Q(n,nil, trivn, stepnil)) →
(step≪⋅≫ ∶ (m ∶ N) → (n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ (q ∶m ≤ n) → (p′ ∶m ≤L `) → (̃̀∶ P (`))
→ (p̃ ∶ Q(n, `, p, ̃̀)) → (p̃′ ∶ Q(m,`, p′, ̃̀))
→ Q(m, cons(n, `, p),≪ q, p′ ≫, stepcons(n, `, p, ̃̀, p̃))) →

(` ∶ SortedList) → P (`) ,

elim≤L ∶ . . .→
(n ∶ N) → (` ∶ SortedList) → (p ∶ n ≤L `)

→ Q(n, `, p, elimSortedList(P,Q, stepnil, stepcons, steptriv , step≪⋅≫, `)) .

∎

4.3 The equivalence between having an eliminator and being
initial

We now show that a dialgebra is an initial object if and only if it has an eliminator. Thus,
in particular, we give a categorical characterisation of inductive-inductive definitions by
instantiating the framework in an appropriate way. The result also applies to many other
concrete classes of data types such as e.g. indexed inductive definitions. By working in
this abstract setting, the proofs become more transparent as only the relevant details
remain. We emphasise again that we are working in extensional Type Theory in this
chapter.

83

4. A categorical characterisation

4.3.1 Initiality implies the elimination rules

Theorem 4.41 Let F,G ∶ C → D with C and D Categories with Families such that ◻F
and ◻G exist. If (A, in) is initial in Dialg(F,G) then the elimination principle holds for
(A, in).

Proof. Let P ∈ Ty(X) and g ∈ (F (X) ⋅ ◻F (P) ⊢ ◻G(P)[in ○ p]) be given. Then h ∶=
ϕ−1
G ○ ⟨in ○ p, g⟩ ○ ϕF ∶ F (X ⋅ P) → G(X ⋅ P), so by initiality, we have a morphism

fold(h) ∶ X → X ⋅ P such that h ○ F (fold(h)) = G(fold(h)) ○ in. Hence the following
diagram commutes:

F (X) in //

F (fold(h)) ��

G(X)
G(fold(h))��

F (X ⋅ P)
ϕF))

F (p)

��

G(X ⋅ P)ϕG
uu

G(p)

��

F (X) ⋅ ◻F (P)⟨in○p,g⟩//

puu

G(X) ⋅ ◻G(P) ϕ−1
G

55

p
))

F (X)
in

// G(X)

This means that p ○ fold(h) ∶ X → X is a morphism in Dialg(F,G), so by initiality, we
must have p ○ fold(h) = id. We now define elim(P, g) ∶= q[fold(h)]. We then have

elim(P, g) ∈ (X ⊢ P [p ○ fold(h)]) = (X ⊢ P [id]) = (X ⊢ P)

as required.
We must check that the computation ruleG(elim(P, g))[in] = g[F (elim(P, g))] holds.

Note first that since p ○ fold(h) = id, we have

fold(h) = ⟨p ○ fold(h),q[fold(h)]⟩ = ⟨id,q[fold(h)]⟩ = q[fold(h)] = elim(P, g)

Using this, we have

G(elim(P, g))[in] = q[ϕG ○G(fold(h)) ○ in]
= q[ϕG ○ ϕ−1

G ○ ⟨in ○ p, g⟩ ○ ϕF ○ F (fold(h))]
= g[ϕF ○ F (fold(h))]
= g[ϕF ○ F (elim(P, g))]

= g[F (elim(P, g))]

where we have used Lemma 4.32 in the last line.

4.3.2 The elimination rules imply initiality

In Type Theory, one can show that inductive types are weakly initial by using the
elimination rules with a non-dependent, constant motive. This proof also carries over
to the generic setting, as long as the Categories with Families involved have constant
families that interact well with ◻G.

84

4.3. The equivalence between having an eliminator and being initial

Theorem 4.42 Let F,G ∶ C → D with C and D CwFs with constant families, such that
­G(∆) = ◻G(q∆) and G(M) = G(M ↑)↓ (the second equation type checks because of the
first). Let (X, in) be an (F,G)-dialgebra. If the elimination principle holds for (X, in),
then (X, in) is weakly initial in Dialg(F,G).

Proof. Let (B,f) be an (F,G)-dialgebra. We have to construct fold(f) ∶ X → B such
that G(fold(f)) ○ in = f ○ F (fold(f)).

Notice that q
|B
∈ (X ⋅ qBX ⊢ qBX[p]) = (X ⋅ qBX ⊢ qB

X ⋅|B) so that q↑ ∶ X ⋅ qB → B.
Hence we have ψ ∶= f ○ F (q↑) ○ ϕ−1

F ∶ F (X) ⋅ ◻F (qB) → G(B). Since ­G(B)
F (X)⋅◻F (|B) =

­G(B)G(X)[in ○ p] = ◻G(qB)[in ○ p], we then have ψ↓ ∈ (F (X) ⋅ ◻F (qB) ⊢ ◻G(qB)[in ○ p])
so that elim(qB,ψ↓) ∈ (X ⊢ qB). Hence we define fold(f) ∶= elim(qB,ψ↓)↑ ∶ X → B. We
now check that the diagram commutes:

G(fold(f)) ○ in = G(elim(qB,ψ↓)↑) ○ in

= G(elim(qB,ψ↓))[in]↑

= ψ↓[F (elim(qB,ψ↓))]↑

= ψ ○ F (elim(qB,ψ↓))

= f ○ F (q↑) ○ ϕ−1
F ○ ϕF ○ F (elim(qB,ψ↓))

= f ○ F (q↑ ○ elim(qB,ψ↓))

= f ○ F (q[elim(qB,ψ↓)]↑)
= f ○ F (elim(qB,ψ↓)↑) = f ○ F (fold(f))

For G = Id ∶ C → C, Lemma 4.21 (◻Id = Id) and Lemma 4.32 (Id = Id) ensures that
the conditions on the constant families are satisfied, since ­Id(∆) = q∆ = ◻Id(q∆) and
Id(M) =M = (M ↑)↓ = Id(M ↑)↓.

For the functors arising from the axiomatisation in Chapter 3, we can show that we
in fact have strong initiality, since we can do induction over the codes. The proof relies
on extensional equality, as we are working in extensional Type Theory in this chapter.

Theorem 4.43 Let Argγ ∶ Dialg(ArgA, U) → Fam(Set) be a functor representing an
inductive-inductive definition. Let (A,B, inA, inB) ∈ EArgγ . The general elimination
principle holds for (A,B, inA, inB) if and only if (A,B, inA, inB) is initial in EArgγ .

Proof. After applying Theorem 4.41 and Theorem 4.42, and discharging the extra as-
sumptions on V ∶ Dialg(ArgA, U) → Fam(Set), all that is left to be proven is that if the
elimination principle holds, not only is (A,B, inA, inB) weakly initial, but fold(f, f ′) ∶=
(fold(f), fold(f ′)) is in fact unique, where (f, f ′) ∶ Argγ(A′,B′) → (A′,B′) is the mor-
phism of another dialgebra. Let (h, g) ∶ (A,B, inA, inB) → (A′,B′, f, f ′) be another mor-
phism that makes the diagram commute. We prove h(x) = fold(f)0(x) and g(x, y) =
fold(f)1(x, y) for all x ∶ A and y ∶ B(x) by applying the elimination principle with
P (x) = h(x) ≡A′ fold(f)0(x) and Q(x, y, x̃) = g(x, y) ≡B′(h(x)) fold(f)1(x, y). Notice

85

4. A categorical characterisation

that this is type correct because of the argument x̃ ∶ h(x) ≡A′ fold(f)0(x) and exten-
sional equality: fold(f)1(x, y) is of type B′(fold(f)0(x)).

Thus, it is enough to prove P and Q for canonical inhabitants, given that the
equations hold for subterms. We need to find stepinA(x, x̃) ∶ P (inA(x)), i.e. prove
h(inA(x)) ≡A′ fold(f)0(inA(x)) given x̃ ∶ ◻ArgA

(P,x), and similarly find stepinB(. . .) ∶
Q(inA(x), inB(x, y), stepinA(x, x̃)). But this is now straightforward by induction over
the codes: in the base case nil, the result follows from the fact that (h, g) makes the dia-
gram commute, and in the step cases, the result follows immediately by the induction
hypothesis.

4.4 Summary and discussion

In this chapter, we have introduced a general categorical framework for describing
elimination rules, and then instantiated it for inductive-inductive definitions by mod-
elling them as certain dialgebras. This gives a less syntactic view of inductive-inductive
definitions. Next, we have proven that the elimination rules in this general setting,
of which the elimination rules for inductive-inductive definitions are an instance, are
equivalent to a more categorical notion: that a certain object is initial in a category of
dialgebras.

Why so general? There are two reasons for adopting the abstract framework as we
have done in this chapter. First and foremost, it is for our own sanity; by keeping things
abstract, we can work with shorter equations and get away with keeping track of less
details. However, there is also a technical reason for proving say Theorem 4.37 at the
level of generality that we did. In Chapter 6, we will extend the current theory in order
to handle more complex situations such as e.g. adding a third simultaneously defined
data type C ∶ (a ∶ A) → B(a) → Set. The theorems of this chapter will immediately scale
and apply also in this setting.

Initial algebras for degenerate inductive-inductive definitions The need to intro-
duce the more complicated machinery of dialgebras comes from the fact that type of the
constructor introB for B ∶ A→ Set can contain the constructor introA for the index set A.
If this does not occur, we can get away with using ordinary algebras for endofunctors
on Fam(Set). More or less by definition, if the constructor introA is never used by a
functor Arg ∶ Dialg(ArgA, U) → Fam(Set), then this functor is really an endofunctor
Arg ∶ Fam(Set) → Fam(Set) and the usual, well-known theory of initial algebras apply.
Moreover, one can check that the elimination principle one gets coincides with the
expected one.

Instantiating the framework The dialgebraic framework presented in this chapter
can be instantiated to many known classes of data types, some of which are collected
in Table 4.1. The functor F ∶ C → D is used to describe the concrete data type, while
the parameters C, D and G ∶ C → D are fixed. We have already hinted at that Set and

86

4.4. Summary and discussion

Table 4.1: Instances of the dialgebraic framework.

Data types C D G

Inductive definitions Set Set id

Indexed inductive definitions SetI SetI id
Inductive-recursive definitionsa type/D type/D id

inductive-inductive definitionsb Dialg(ArgA, U) Fam(Set) V
a Modulo size issues. b In a subcategory.

SetI can be used for inductive and indexed inductive definitions respectively. Dybjer
and Setzer [2003] give an initial algebra semantics for inductive-recursive definitions,
using slice categories, which coincides with our dialgebraic semantics presented here
when instantiated to the same slice category. Finally, we see that inductive-inductive
definitions are the only example to date where dialgebras are used instead of ordinary
F -algebras.

Related work Another closely related framework for generic induction/elimination
rules is the framework described by Hermida and Jacobs [1998], later extended by
Ghani et al. [2010, 2011] (see also Fumex [2012]). Their idea is to model types by objects
in a category B, and properties by the total category of a fibration p ∶ E→ B; the functor
p maps each property to the type it is a property of. By asking for some extra structure,
namely a comprehension category with unit, induction principles can be given an
elegant characterisation in terms of liftings of functors and adjoint equivalences.

Given a Category with Families with constant families, one can construct a split full
comprehension category with unit (see Jacobs [1999, Exercise 10.4.6]), and conversely,
given a split comprehension category with units, one can construct a Category with
Families. We see that there is a slight gap: constant families are needed to get a unit,
but a unit does not necessarily give constant families. Furthermore, starting from a
comprehension category, one might not get a ◻F type in general.

The fibrational approach is hence in one sense more general. On the other hand,
it also tries to do less. First of all, only endofunctors and ordinary algebras are con-
sidered, not arbitrary functors and dialgebras, so the framework is not suitable for
inductive-inductive definitions. Furthermore, no equivalence between induction princi-
ples and initiality is shown, only that if an initial algebra exists in a certain category, then
the induction principle is valid. Another advantage of our Categories with Families
framework is that we can also talk about the computation rules associated with the
eliminators, something that is missing in the fibrational setting.

87

Chapter5

Semantics

Contents
5.1 A set-theoretic model . 89
5.2 Container semantics: an extensional normal form 97
5.3 Reduction to extensional indexed inductive definitions 110
5.4 Summary and discussion . 117

So far, we have given an axiomatisation of a type theory with inductive-inductive defi-
nitions, together with a more streamlined categorical characterisation using extensional
Type Theory. In this chapter, we first prove that our theory is consistent by constructing
a “standard” set-theoretic model in Section 5.1. We then give a second consistency proof
by interpreting the theory in the (extensional) theory of indexed inductive definitions
in Section 5.3, making use of a kind of “container normal form” for inductive-inductive
definitions, which is developed in Section 5.2. This also provides a tighter bound for
the proof-theoretic strength of the theory.

A shorter description of the model described in Section 5.1 has previously appeared
in the proceedings of CSL 2010 [Nordvall Forsberg and Setzer, 2010] and the Schwicht-
enberg Festschrift [Nordvall Forsberg and Setzer, 2012].

5.1 A set-theoretic model

We will develop a model in ZFC set theory, extended by two inaccessible cardinals
in order to interpret Set and large types. The main feature of the model is that it is
natural and straightforward: types are interpreted as sets, terms as elements, the typing
relation x ∶ A as the membership relation x ∈ A etc. Inductive-inductive definitions
are interpreted by iterating a monotone operator until a fixed point is reached. Our
model is a simpler version of those developed by Dybjer and Setzer [1999, 2006] for
induction-recursion. See Aczel [1999] for a more detailed treatment of interpreting
Type Theory in set theory.

89

5. Semantics

5.1.1 Dialgebras versus F -algebras

A priori, we need to construct a model which validates the dependent (general) elimi-
nation rules from Section 3.2.5. However, by Theorem 4.43, it is enough to construct
an initial dialgebra, i.e. validate non-dependent elimination. We now make a simple
observation that will make life even easier for us: if we happen to be so lucky that the
functor G has a left adjoint L ⊣ G, then we can equivalently consider (L ○ F)-algebras
instead of (F,G)-dialgebras.

Lemma 5.1 Let F,G ∶ C→ D be functors, such that G has a left adjoint L ∶ D→ C. The
categories AlgL○F and Dialg(F,G) are isomorphic.

Proof. The natural isomorphisms φX,A ∶ Hom(L(X),A) → Hom(X,G(A)) between
hom-sets induce an isomorphism between AlgL○F and Dialg(F,G), which sends (X,h ∶
L(F (X)) →X) in AlgL○F to (X,φF (X),X(h)) and (X,k ∶ F (X) → G(X)) in Dialg(F,G)
to (X,φ−1

F (X),X(k)). The functors are identities on morphisms. The required squares
commute because of the naturality of φX,A: For any f ∶X ′ →X and g ∶ A→ A′, we have

φX′,A′(g ○ h ○L(f)) = G(g) ○ φX,A(h) ○ f

In detail, if g ∶ (X,h) → (Y,h′) in AlgL○F , we need to check that also g ∶ (X,φ(h)) →
(Y,φ(h′)) in Dialg(F,G). In other words, we need to check that the right hand side
diagram commutes given that the left hand side does:

L(F (X)) h //

L(F (g))
��

X

g

��

F (X) φ(h) //

F (g)
��

G(X)
G(g)
��

L(F (Y))
h′
// Y F (Y)

φ(h′)
// G(Y)

But this is straightforward:

G(g) ○ φ(h) = φ(g ○ h) = φ(h′ ○L(F (g))) = φ(h′) ○ F (g)

The other direction works in exactly the same way, using the naturality of φ−1
X,A:

g ○ φ−1
X,A(k) ○L(f) = φ−1

X′,A′(G(g) ○ k ○ f) .

Finally, since φF (X),X is an isomorphism, the induced functor obviously is too.

In particular, in the situation of the proposition, AlgL○F has an initial object if and
only if Dialg(F,G) does. Inspecting the proof, we see that the carriers of the algebras
are preserved by the isomorphism, so that the carrier of the initial algebra in AlgL○F is
the carrier of the initial dialgebra in Dialg(F,G).

When describing inductive-inductive definitions, dialgebras crop up in two places:
first when describing the domain of the functor Arg ∶ Dialg(ArgA, U) → Fam(Set), and
secondly in the supercategory Dialg(Arg, V) of the category we are interested in. We
will now see that both U ∶ Fam(Set) → Set and V ∶ Dialg(ArgA, U) → Fam(Set) in fact
have left adjoints.

90

5.1. A set-theoretic model

Proposition 5.2 The index set functor U ∶ Fam(Set) → Set has a left adjoint L ∶ Set →
Fam(Set) given by L(X) = (X,λx.0) and L(f) = (f, λx. id).

Proof. It is easy to see that we have a bijective correspondence between the hom-sets
Hom(L(X), (A,B)) and Hom(X,U(A,B))):

(f, g) ∶ L(X) → (A,B)
f ∶X → A gx ∶ 0→ B(x)

f ∶X → A

f ∶X → U(A,B)

Naturality is also easily dealt with.

We now show that also V ∶ Dialg(ArgA, U) → Fam(Set) (or, equivalently, V ∶
AlgL○ArgA

→ Fam(Set)) has a left adjoint, which will be a free algebra in the follow-
ing sense:

Definition 5.3 Let F ∶ C→ C be an endofunctor and Y an object in C. A free F -algebra
on Y is an F -algebra (X,h) together with a morphism ηY ∶ Y →X in C such that for any
F -algebra (A,a) and morphism f ∶ Y → A, there exists a unique F -algebra morphism
f† ∶ (X,h) → (A,a) such that the following diagram commutes:

F (X) h //

F (f†)
��

X

f†

��

Y
ηYoo

f
��

F (A) a // A

∎

Lemma 5.4 (Adámek [1974]) The carrier of the initial algebra for the functor F (−) + Y
is the carrier of a free F -algebra on Y and vice versa. In particular, the free F -algebra
on Y is unique up to isomorphism.

Proof. By the universal property of coproducts, a morphismF (X)+Y →X corresponds
exactly to a morphism F (X) → X and a morphism Y → X . An easy diagram chase
then confirms that all the necessary diagrams commute.

In detail, let (X, in) be the initial F (−)+Y -algebra. Then (X, in○ inl) is an F -algebra,
and we can define ηY ∶= in ○ inr. Given any F -algebra (A,a) and morphism f ∶ Y → A,
we can construct an algebra (A, [a, f]) for the functor F (−)+Y , and we can define f† as
f† ∶= fold([a, f]). The necessary diagram commutes since the corresponding diagram
for fold([a, f]) does, and also uniqueness follows from uniqueness of fold([a, f]) and
the universal property of coproducts. The other direction follows in the same way.

This gives us a way to compute the free F -algebra on Y ; we consider the initial
sequence

0→ F (0) + Y → F (F (0) + Y) + Y → . . .

of F (−) + Y and show that it converges at some stage α.

91

5. Semantics

Definition 5.5 (Free H-algebra functor) Let H ∶ C → C be a functor such that free
H-algebras exist on every object. The free H-algebra functor F ∶ C→ AlgH sends Y in C
to the free H-algebra on Y . The action on morphisms is induced by the freeness of the
algebra: If f ∶ Y → Y ′ is a morphism in C, F (f) = (ηY ′ ○ f)†. ∎

Proposition 5.6 The free H-algebra functor F ∶ C→ AlgH is left adjoint to the forgetful
functor U ∶ AlgH → C.

Proof. We have to check that morphisms f ∶ F (Y) → (X,h) in AlgH are in bijective
correspondence with morphisms g ∶ Y → X in C. Let us write F (Y) = ((Y , k), ηY).
Given f ∶ F (Y) → (X,h), we have f ○ ηY ∶ Y → X , and given g ∶ Y → X , by definition
g† ∶ Y →X . We check that these constructions are inverse to each other. That g† ○ ηY = g
is exactly the fact that the right hand triangle in Definition 5.3 commutes. The fact that
(f ○ ηY)† = f is less immediate, but follows from the uniqueness of (f ○ ηY)† and the
fact that f ○k = h○H(f) as a morphism in AlgF . A routine verification shows naturality
in Y and (X,h).

Thus, in particular the forgetful functor V ∶ AlgL○ArgA
→ Fam(Set) has a left adjoint

M ∶ Fam(Set) → AlgL○ArgA
and, by Lemma 5.1, the category Dialg(Arg, V) is isomorphic

to AlgM○Arg. Hence the subcategory EArg is isomorphic to a subcategory of AlgM○Arg.

Theorem 5.7 For each functor Arg = (ArgA,ArgB) representing an inductive-inductive
definition, EArg has an initial object.

Proof. By the results from this section, we need to find an initial (M ○ Arg)-algebra,
where M ∶ Fam(Set) → AlgL○ArgA

is the free L ○ArgA-algebra functor. The functor M is
well-defined since ArgA is “strictly positive” by construction: arguments X never occur
to the left of a function arrow in ArgA(X). Hence the size κ of all premises of inductive
arguments is independent of X , and the initial sequence for the functor L(ArgA(−) +X
(hence forM(X) by Proposition 5.6) will converge after κ+ iterations by a generalisation
of Proposition 1.6, where κ+ is the least regular cardinal above κ.

In the same way, also ArgB is also strictly positive, and hence the initial sequence

0→M(Arg(0)) →M(Arg(M(Arg(0)))) → . . .

will converge, again by an argument similar to Proposition 1.6. Hence an initial (M○Arg)-
algebra exists [Adámek et al., 2010, Thm 3.1.4].

5.1.2 A concrete model

For completeness, we now use Theorem 5.7 to give a concrete model in ZFC set theory,
extended with two inaccessible cardinals to interpret Set and large types.

5.1.2.1 Preliminaries set theory

We recall some standard definitions and properties that we will use in the model
construction. We employ classical logic in this section.

92

5.1. A set-theoretic model

Definition 5.8 (Regular and inaccessible) Let κ be a cardinal.

(i) κ is regular if the cofinality of κ is κ, i.e. if sup f < κ for all strictly increasing
functions f ∶ α → κ with α < κ.

(ii) κ is inaccessible if it is regular and a strong limit cardinal (i.e. if β < κ then 2β < κ).
It is weakly inaccessible if it is regular and a limit cardinal (i.e. if β < κ then β+ < κ,
where β+ is the least cardinal larger than β). ∎

Note that all regular cardinals are limit ordinals, but not necessarily limit cardinals.
For simplicity, we will assume the generalised continuum hypothesis, which states that
β+ = 2β . Thus, under this hypothesis, weak and strong inaccessibility coincides.

Definition 5.9 (The cumulative hierarchy) The cumulative hierarchy Vα is a collection
of sets indexed by ordinals α, defined by transfinite recursion as follows:

V0 = ∅
Vβ+1 = P(Vβ)
Vλ = ⋃

β<λ
Vβ for λ limit ∎

One can check that Vα = ⋃β<αP(Vβ) for every ordinal α. We will often make use of
the following:

Proposition 5.10

(i) Vα is transitive: if x ∈ Vα then x ⊆ Vα.

(ii) Vα is closed under subsets: if x ∈ Vα and y ⊆ x then y ∈ Vα.

(iii) Vα is monotone: if α < β, then Vα ⊆ Vβ .

(iv) If x ∈ Vκ with κ inaccessible then ∣x∣ < κ.

5.1.2.2 Interpretation of expressions

We will be working informally in ZFC extended with the existence of two strongly
inaccessible cardinals i0 < i1. We use standard set theoretic constructions, e.g.

⟨a, b⟩ ∶= {{a},{a, b}} ,

λx ∈ a . b(x) ∶= {⟨x, b(x)⟩ ∣x ∈ a} ,

Πx∈ab(x) ∶= {f ∶ a→ ⋃
x∈a

b(x) ∣ ∀x ∈ a.f(x) ∈ b(x)} ,

Σx∈ab(x) ∶= {⟨c, d⟩ ∣ c ∈ a ∧ d ∈ b(c)} ,

0 ∶= ∅,1 ∶= {0},2 ∶= {0,1} ,

a0 + . . . + an ∶= Σi∈{0,...,n}ai

93

5. Semantics

Whenever we introduce sets Aα indexed by ordinals α, let

A<α ∶= ⋃
β<α

Aβ .

For every expression A of our type theory, we will give an interpretation JAKρ, re-
gardless of whetherA type orA ∶ B or not. Interpretations might however be undefined,
written JAKρ ↑. If JAKρ is defined, we write JAKρ ↓. We write A ≃ B for partial equality,
i.e. A ≃ B if and only if A ↓⇔ B ↓ and if A ↓, then A = B. We write A ∶≃ B if we define
A such that A ≃ B.

Open terms will be interpreted relative to an environment ρ, i.e. a function map-
ping variables to terms. Write ρ[x↦a] for the environment ρ extended with x ↦ a, i.e.
ρ[x↦a](y) = a if y = x and ρ(y) otherwise. The interpretation JtKρ of closed terms t will
not depend on the environment, and we omit the subscript ρ.

The interpretation of the logical framework is as in Dybjer and Setzer [1999]:

JSetK ∶= Vi0 JtypeK ∶= Vi1
J(x ∶ A) → BKρ ∶≃ Πy∈JAKρJBKρ[y↦x] Jλ(x ∶A). eKρ ∶≃ λy ∈ JAKρ . JeKρ[y↦x]

J(Σx ∶ A)BKρ ∶≃ Σy∈JAKρJBKρ[y↦x] J⟨a, b⟩Kρ ∶≃ ⟨JaKρ, JbKρ⟩
J0K ∶= 0 J1K ∶= 1 J2K ∶= 2 J⋆K ∶= 0 JttK ∶= 0 JffK ∶= 1

Jif x then a else bKρ ∶≃
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JaKρ if JxKρ = 0

JbKρ if JxKρ = 1

undefined otherwise
J!AKρ ∶≃ ∅ (the unique inclusion ∅ → JAKρ)

Note that we interpret large elimination for 2 (at no extra cost). The η rules are easily
proved.

To interpret terms containing SPA, SPB, ArgA, ArgB, IndexB, and the codes nil,
non-ind, A-ind and B-ind, we first define JSPAK, JSPBK, JArgAK, JnilK, Jnon-indK, . . . and
interpret

JSPA(Xref)Kρ ∶= JSPAK(JXrefKρ)
⋮

JArgA(Xref , γ,X,Y, repX)Kρ ∶= JArgAK(JXrefKρ, JγKρ, JXKρ, JY Kρ, JrepXKρ)
⋮

Jnon-ind(K,γ)Kρ ∶= Jnon-indK(JKKρ, JγKρ)
⋮ etc.

In all future definitions, if we are currently defining JF Kρ where F ∶ D → E, say, let
JF Kρ(d) ↑ if d ∉ JDKρ.

94

5.1. A set-theoretic model

JSPAK(Xref) is defined as the least set such that

JSPAK(Xref) = 1 + ∑
K∈JSetK

(K → JSPAK(Xref)) + ∑
K∈JSetK

JSPAK(Xref +K)

+ ∑
K∈JSetK

∑
h∶K→Xref

JSPAK(Xref) .

Such a set exists by the inaccessibility of i0. The constructors are then interpreted as

JnilK ∶≃ ⟨0,0⟩ JB-indK(K,h, γ) ∶≃ ⟨3, ⟨K, ⟨h, γ⟩⟩⟩
Jnon-indK(K,γ) ∶= ⟨1, ⟨K,γ⟩⟩ JA-indK(K,γ) ∶≃ ⟨2, ⟨K,γ⟩⟩

JSPBK and its constructors are defined analogously. The functions JArgAK, JArgBK and
JIndexBK are defined according to their equations, e.g.

JArgAK(Xref , JnilK,X,Y, repX) ∶≃ 1

JArgAK(Xref , Jnon-indK(K,γ),X,Y, repX) ∶≃ ∑
k∈K

JArgAK(Xref , γ(k),X,Y, repX)

JArgAK(Xref , JA-indK(K,γ),X,Y, repX) ∶≃∑
j∶K→A

JArgAK(Xref +K,γ,X,Y, [repX, j])

JArgAK(Xref , JB-indK(K,h, γ),X,Y, repX) ∶≃ ∑
j∈Πk∈KB(repX(h(k)))

JArgAK(Xref , γ,X,Y, repX).

Finally, we have to interpret AγA,γB
, BγA,γB

, introAγA,γB
and introBγA,γB

, for which
we use Theorem 5.7. Concretely, this means that we iterate Arg0

A until a fixed point
is reached, then apply Arg0

B once, and repeat. This is intuitively necessary since Arg0
B

expects an argument introA ∶ Arg0
A(γA,A,B) → A, which can be chosen to be the identity

if A is a fixed point of Arg0
A(γA,A,B) (with B fixed). In more detail, let

JAγA,γB
K ∶≃ Ai0 , JBγA,γB

K(a) ∶≃ Bi0(a) ,
JintroAγA,γB

K(a) ∶≃ a , JintroBγA,γB
K(b) ∶≃ b ,

where Aα and Bα are simultaneously defined by recursion on α as

Aα ∶= least fixed point containing A<α of λX. JArg0
AK(γA,X,B<α) ,

Bα(a) ∶= {b ∣ b ∈ JArg0
BK(γA,Aα,B<α, id, γB)

∧ JIndex0
BK(γA,Aα,B<α, id, γB, b) = a} .

The (graph of the) eliminators can then be built up in the same stages.
Having interpreted all terms, we finally interpret contexts as sets of environments:

J∅K ∶≃ ∅ JΓ, x ∶ AK ∶≃ {ρ[x↦a] ∣ ρ ∈ JΓK ∧ a ∈ JAKρ}.

95

5. Semantics

5.1.2.3 Soundness of the rules

The verification of most of the rules is routine. The main difficulty lies in proving that
JSPAK and JSPBK are well-defined, and that JAγA,γBK ∈ JSetK and JBγA,γBK ∶ JAγA,γBK→
JSetK.

JSPAK is obtained by iterating the appropriate operator Γ ∶ (JSetK → JSetK) →
(JSetK → JSetK) up to i0 times. Since Xref ∈ JSetK, we have (Xref + K), (K → Xref)
∈ JSetK for all K ∈ JSetK = Vi0 by the inaccessibility of i0. Hence all “premises” have
cardinality at most i0, which is regular, so that the operator has a fixed point after i0
iterations by Proposition 1.6. The fixed point must be an element of JtypeK = Vi1 by the
inaccessibility of i1.

To see that JAγA,γBK ∈ JSetK and JBγA,γBK ∶ JAγA,γBK → JSetK, one first verifies that
JArg0

AK, JArg0
BK, JIndex0

BK are monotone in the following sense:

Lemma 5.11 For all γA ∈ JSP0
AK and γB ∈ JSP0

BK(γA):

(i) If A ⊆ A′ and B(x) ⊆ B′(x) then JArg0
AK(γA,A,B) ⊆ JArg0

AK(γA,A
′,B′).

(ii) If in addition introA(x) = intro′A(x) for all x ∈ Arg0
A(γA,A,B), then

JArg0
BK(γA,A,B, introA, γB) ⊆ JArg0

BK(γA,A
′,B′, intro′A, γB)

and

JIndex0
BK(γA,A,B, introA, γB, x) = JIndex0

BK(γA,A
′,B′, intro′A, γB, x)

for all x ∈ JArg0
BK(γA,A,B, introA, γB).

We can then adapt the standard results [Aczel, 1977] about monotone operators.
First, we note that one application of JArg0

AK and JArg0
BK is not enough to take us outside

of JSetK:

Lemma 5.12 For all γA ∈ JSP0
AK and γB ∈ JSP0

BK(γA):

(i) If X ∈ JSetK and Y (x) ∈ JSetK for each x ∈X , then JArg0
AK(γA,X,Y) ∈ JSetK.

(ii) If X ∈ JSetK and Y (x) ∈ JSetK for each x ∈ X , JArg0
BK(γA,X,Y, introX , γB) ∈ JSetK.

We then iterate, using Aα and Bα, in order to reach a fixed point. This uses that fact
that both JArg0

AK and JArg0
BK are κ-continuous for large enough κ:

Lemma 5.13

(i) For α < i0, Aα ∈ JSetK and Bα ∶ Aα → JSetK.

(ii) For α < β, Aα ⊆ Aβ and Bα(a) ⊆ Bβ(a) for all a ∈ Aα.

(iii) There isκ < i0 such that for allα ≥ κ,Aα = Aκ andBα(a) = Bκ(a) for all a ∈ Aα.

96

5.2. Container semantics: an extensional normal form

Now we are done, since JAγA,γBK = Ai0 = Aκ ∈ JSetK, and similarly for JBγA,γBK. We
have proved:

Theorem 5.14 There exists a model of the theory of inductive-inductive definitions that
can be constructed using ZFC and the existence of two inaccessible cardinals.

5.2 Container semantics: an extensional normal form

Our axiomatisation of inductive-inductive definitions is based on the idea that inductive
types are given by their constructors, which in turn are given by a list of arguments (the
codes in SPA and SPB). Thus, we are lead to consider a theory which is quite syntactic
in nature. Furthermore, since lists (the codes) are inductively defined, it is necessary
to use recursion when proving properties about them or constructing functions on
them, as we have seen many times already in Chapter 3. This sometimes complicates
an intuitively clear idea.

Containers [Abbott, 2003; Abbott et al., 2003, 2005] provide a more semantic notion of
data types, where the main mental notion is that of shapes and positions: each value of a
data type has a certain shape, and for each shape, there is a set of positions where data is
stored. For instance, a list ` ∶ List(A) is completely determined by its length n (the shape
of `) and the function f ∶ Fin(n) → Awhich maps eachm ∶ Fin(n) to the value at position
m in `. Thus the set of positions for a list of length n is Fin(n), and we can see (n, f) as
a semantic representation of `. On the other hand, each such pair (n, f) determines a
list, and we have a bijection (actually isomorphism) List(A) ≅ (Σn ∶ N)(Fin(n) → A).

A container S ◁ P consists of a family (S,P), where S ∶ Set are the shapes and
P ∶ S → Set are the positions. The extension of a containerS◁P is the functor JS◁P KCont ∶
Set→ Set defined by JS◁P KCont(X) = (Σs ∶ S)(P (s) →X). Hence List is the extension
of the container N◁ Fin, or, in other words, the container N◁ Fin is an induction free
representation of the inductive type former List.

We now set out to find a corresponding representation for the functors representing
inductive-inductive definitions described in Chapter 4. Containers can be interpreted
in any locally Cartesian closed category, so one possible approach would be to prove
that the categories involved indeed are locally Cartesian closed. Altenkirch and Morris
[2009] follow this approach to construct indexed containers, which represent indexed
inductive definitions. However, since we want to represent functors which are not
necessarily endofunctors, it is not so clear if this approach would work. Instead, we start
with a different observation: every strictly positive inductive type can be represented
as the extension of a container, using extensional Type Theory [Dybjer, 1997; Abbott
et al., 2004]. Thus, we will look for such a Container Normal Form1 also for inductive-
inductive definitions, and this will tell us what an inductive-inductive container should
be.

1Thorsten Altenkirch (private communication) once suggested using the abbreviation CNF in order to
maximise confusion.

97

5. Semantics

5.2.1 Commuting codes

The idea behind the normal form is quite simple: since noninductive arguments cannot
depend on inductive arguments, and A-inductive arguments cannot depend on B-
inductive arguments, we can push these arguments to the front, and then combine
multiple occurrences into a single occurrence. To show that the meaning of the code
is preserved, we need the following isomorphisms, some of them only valid in type
theories with function extensionality:

Lemma 5.15 In extensional Type Theory, we have the following isomorphisms:

(i) (1→ A) ≅ 1 ×A ≅ A.

(ii) (0→ A) ≅ 1.

(iii) (Σx ∶ A)(Σy ∶ B(x))C(x, y) ≅ (Σp ∶ (Σx ∶ A)B(x))C(fst(p), snd(p))

(iv) (x ∶ A) → (y ∶ B(x)) → C(x, y) ≅ (z ∶ (Σx ∶ A)B(x)) → C(fst(z), snd(z))

(v) (x ∶ A) → ((Σy ∶ B(x))C(x, y)) ≅ (Σf ∶ (x ∶ A) → B(x))((x ∶ A) → C(x, f(x)))

5.2.1.1 Commuting codes in SPA

We start with the codes in SPA.

Lemma 5.16 SPA is functorial, i.e. if f ∶ Xref → X ′
ref , then there is a map SPA(f) ∶

SPA(Xref) → SPA(X ′
ref), which lifts to a map

SPArgA
(γ, f) ∶ ArgA(Xref , γ,X,Y, repX ○ f) → ArgA(X ′

ref ,SPA(f, γ),X,Y, repX) .

Proof. The map SPA(f) is straightforward to define:

SPA(f,nil) = nil

SPA(f,non-ind(K,γ)) = non-ind(K,λk.SPA(f, γ(k)))
SPA(f,A-ind(K γ)) = A-ind(K,SPA(f + id, γ))

SPA(f,B-ind(K,hindex, γ)) = B-ind(K,f ○ hindex,SPA(f, γ))

The only interesting point is perhaps how we have to make a recursive call with f + id =
[inl ○ f, inr] ∶ (Xref +K) → (X ′

ref +K) in the A-ind case.
The map SPArgA

(γ, f) is extensionally the identity function, but can be defined also
in intensional Type Theory.

In particular, if f is an isomorphism, so is SPArgA
(γ, f). We will use SPA(f) as a

glue when we have codes ϕ, ϕ′ which are “the same”, except that their sets of referable
elements Xref , X ′

ref are not equal on the nose, but only isomorphic.

98

5.2. Container semantics: an extensional normal form

Definition 5.17 We call two codes γ,φ ∶ SP0
A equivalent, and we write γ ≃ φ, if they

decode to (naturally) isomorphic sets, i.e.

Arg0
A(γ,X,Y) ≅ Arg0

A(φ,X,Y)

naturally in (X,Y). ∎

The relation ≃ can be naturally extended to open contexts, i.e. codes γ,φ ∶ SPA(Xref),
as well. It is obviously an equivalence relation, and we can substitute “equals” for
“equals”: if γ ≃ φ, then e.g. A-ind(K,γ) ≃ A-ind(K,φ).

Lemma 5.18 The code non-ind can be pushed to the front, and B-ind to the back:

(i) For all K ∶ Set, S ∶ Set and ϕ ∶ S → SPA(Xref +K),

A-ind(K,non-ind(S,ϕ)) ≃ non-ind(S,λs.A-ind(K,ϕ(s)))

(ii) For all K ∶ Set, hindex ∶K →Xref , S ∶ Set and ϕ ∶ S → SPA(Xref),

B-ind(K,hindex,non-ind(S,ϕ)) ≃ non-ind(S,λs.B-ind(K,hindex, ϕ(s)))

(iii) For all K1 ∶ Set, hindex ∶K1 →Xref , K2 ∶ Set and ϕ ∶ SPA(Xref +K2),

B-ind(K1, hindex,A-ind(K2, ϕ)) ≃ A-ind(K2,B-ind(K1, inl ○ hindex, ϕ))

Multiple occurrences of the same code can be combined:

(iv) For all K1 ∶ Set, K2 ∶K1 → Set and γ ∶ (x ∶K1) →K2(x) → Set,

non-ind(K1, λx.non-ind(K2(x), λy. γ(x, y))) ≃
non-ind((Σx ∶K1)K2(x), λp. γ(fst(p), snd(p)))

(v) For all K1 ∶ Set, K2 ∶ Set and ϕ ∶ SPA((Xref +K1) +K2),

A-ind(K1,A-ind(K2, ϕ)) ≃ A-ind(K1 +K2,SPA(α,ϕ)) ,

where α ∶ (Xref +K1) +K2 →Xref + (K1 +K2) is the isomorphism witnessing the
associativity of +.

(vi) For all K1 ∶ Set, K2 ∶ Set, h1 ∶K1 →Xref , h2 ∶K2 →Xref and γ ∶ SPA(Xref),

B-ind(K1, h1,B-ind(K2, h2, ϕ)) ≃ B-ind(K1 +K2, [h1, h2], ϕ)

We have the following base case:

(vii) nil ≃ non-ind(1,A-ind(0,B-ind(0, !0,nil)))

Corollary 5.19 Each code γ ∶ SP0
A is equivalent to a code of the form

non-ind(S,λs.A-ind(PA(s),B-ind(PB(s), inr ○ hindex(s),nil))) (5.1)

where S ∶ Set, PA ∶ S → Set, PB ∶ S → Set and hindex ∶ (s ∶ S) → PB(s) → PA(s).

99

5. Semantics

Proof. Given a code γ, start by replacing all subcodes nil in γ using Lemma 5.18(vii).
Now push non-ind to the front and B-ind to the back using (i) to (iii), combining codes
of the same type using (iv) to (vi) as we go along.

Remark 5.20 Inductive definitions can be seen as a special case of inductive-inductive
definitions where the second family B ∶ A→ Set is arbitrary and the code for first the
first set does not use any B-ind codes (see Section 3.2.4.1). Hence, applying Corollary 5.19
to such a code, we will end up with PB(s) = 0 for all s ∶ S. Equivalently, we get a code
of the form

non-ind(S,λs.A-ind(PA(s),nil)) .

But this is the code for the W-type W(s ∶ S)PA(s) from Section 3.2.4.1. Hence we
recover Dybjer’s [1997] result that inductive definitions can be reduced to W-types in
extensional Type Theory.

5.2.1.2 Commuting codes in SPB

We now repeat the exercise for codes in SP0
B. We would like to prove that also SPB is

functorial, but first, we need to know that A-Term is:

Lemma 5.21 A-Term is functorial, i.e. if f ∶ Xref → X ′
ref and g ∶ Yref → Y ′

ref , then
there is a function A-Term(γA, f, g) ∶ A-Term(γA,Xref , Yref) → A-Term(γA,X

′
ref , Y

′
ref).

Furthermore,

repA(γA, introA, repX ○ f, repindex ○ g, repY ○ g, x) =
repA(γA, introA, repX, repindex, repY,A-Term(γA, f, g)(x))

for all x ∶ A-Term(γA,Xref , Yref).

Proof. This follows immediately from the functoriality of Arg0
A, if we simultaneously

prove that also B-Term is functorial, i.e. that given f ∶ Xref → X ′
ref and g ∶ Yref → Y ′

ref ,
there is a map

B-Term(γA, f, g)(x) ∶ B-Term(γA,Xref , Yref , x)
→ B-Term(γA,X

′
ref , Y

′
ref ,A-Term(γA, f, g)(x))

for each x ∶ A-Term(γA,Xref , Yref).

Lemma 5.22 SPB is functorial, i.e. if f ∶ Xref → X ′
ref and g ∶ Yref → Y ′

ref , then there is a
map SPB(f, g) ∶ SPB(γA,Xref , Yref) → SPB(γA,X

′
ref , Y

′
ref), which lifts to a map

SPArgB
(γ, f, g) ∶ ArgB(γA,Xref , Yref , γ,X,Y, repX ○ f, repindex ○ g, repY ○ g)

→ ArgB(γA,X
′
ref , Y

′
ref ,SPB(f, g, γ),X,Y, repX, repindex, repY) .

100

5.2. Container semantics: an extensional normal form

Proof. The map SPB(f, g) is defined like SPA(f):

SPB(f, g,nil(a)) = nil(A-Term(γA, f, g)(a))
SPB(f, g,non-ind(K,γ)) = non-ind(K,λk.SPB(f, g, γ(k)))

SPB(f, g,A-ind(K γ)) = A-ind(K,SPB(f + id, g, γ))
SPB(f, g,B-ind(K,hindex, γ)) = B-ind(K,A-Term(γA, f, g) ○ hindex,SPB(f, g + id, γ))

Definition 5.23 We call two codes γ,φ ∶ SP0
B(γA) equivalent, written γ ≃ φ, if

(i) they decode to (naturally) isomorphic sets, i.e. there is an isomorphism

fX,Y,introA
∶ Arg0

B(γ,X,Y, introA) ≅ Arg0
A(φ,X,Y, introA)

natural in (X,Y, introA), and

(ii) they target the same index, i.e.

Index0
B(γ, x) = Index0

B(φ, fX,Y,introA
(x))

for all x ∶ Arg0
B(γ,X,Y, introA). ∎

Lemma 5.24 The code non-ind can be pushed to the front, and B-ind to the back:

(i) For all K ∶ Set, S ∶ Set and ϕ ∶ S → SPB(Xref +K,Yref , γA),

A-ind(K,non-ind(S,ϕ)) ≃ non-ind(S,λs.A-ind(K,ϕ(s)))

(ii) For all K,S ∶ Set, h ∶ K → A-Term(γA,Xref , Yref) and ϕ ∶ S → SPB(Xref , Yref +
K,γA),

B-ind(K,h,non-ind(S,ϕ)) ≃ non-ind(S,λs.B-ind(K,h,ϕ(s)))

(iii) For all K1 ∶ Set, hindex ∶ K1 → A-Term(γA,Xref , Yref), K2 ∶ Set and ϕ ∶ SPB(Xref +
K2, Yref +K1, γA),

B-ind(K1, hindex,A-ind(K2, ϕ)) ≃ A-ind(K2,B-ind(K1,A-Term(γA, inl, id)○hindex, ϕ))

Multiple occurrences of non-ind and A-ind can be combined:

(iv) For all K1 ∶ Set, K2 ∶K1 → Set and γ ∶ (x ∶K1) →K2(x) → SPB(Xref , Yref , γA),

non-ind(K1, λx.non-ind(K2(x), λy. γ(x, y))) ≃
non-ind((Σx ∶K1)K2(x), λp. γ(fst(p), snd(p)))

(v) For all K1 ∶ Set, K2 ∶ Set and ϕ ∶ SPB((Xref +K1) +K2, Yref , γA),

A-ind(K1,A-ind(K2, ϕ)) ≃ A-ind(K1 +K2,SPB(α, id, ϕ)) ,

where α ∶ (Xref +K1) +K2 →Xref + (K1 +K2) is the isomorphism witnessing the
associativity of +.

101

5. Semantics

We have the following base case:

(vi) nil(a) ≃ non-ind(1,A-ind(0,B-ind(0, !0,nil(A-Term(inl, inl, a)))))

Note how the combining of multiple B-ind codes into one is missing from the lemma
– later arguments might now depend on earlier ones by including them in their index via
the constructor introA. For instance, let γA = A-ind(1,B-ind(1, inr,nil)). In other words,
γA represents a data type A with constructor introA ∶ (a ∶ A) → B(a) → A for some as of
yet unspecified data type B ∶ A→ Set. Now consider e.g. the code

γB = A-ind1(B-ind1(aref(inr(⋆)),B-ind1(arg(bref(inr(⋆)),⋆,⋆),nil(aref(inr(⋆))))))

which represents a constructor

introB ∶ (a ∶ A) → (b ∶ B(a)) → B(introA(a, b)) → B(a) .

We need the argument b ∶ B(a) before we can describe the index introA(a, b), hence these
two arguments cannot be combined. The best we can do when it comes to normal forms
is the following:

Corollary 5.25 Each code γB ∶ SP0
B(γA) is equivalent to a code of the form

non-ind(S,λs.A-ind(PA(s),
B-ind(PB,0(s), h0(s), . . .B-ind(PB,n(s)(s), hn(s)(s),nil(a(s))))
´¹¹¹¸¹¹¹¶

n(s) many

)) (5.2)

where S ∶ Set, PA ∶ S → Set, n ∶ S → N,

PB,i ∶ S → Set

hi ∶ (s ∶ S) → PB,i(s) → A-Term(γA, PA(s), PB,0(s) + . . . PB,i−1(s))

for 0 ≤ i ≤ n(s) and a ∶ (s ∶ S) → A-Term(γA, PA(s), PB,0(s) + . . . PB,n(s)(s)).

Proof. As before, push non-ind to the front and B-ind to the end. As multiple occurrences
all codes but B-ind can be combined, we will end up with a code as described above.

5.2.2 Inductive-inductive containers

We now reap the benefits of the work of the last section by reading off the definition of
an inductive-inductive container from Corollaries 5.19 and 5.25.

Definition 5.26 (inductive-inductive container) An inductive-inductive container (CA,CB)
is given by the following data, and decoded as follows:

• CA = (SA, PAA , PAB , hAindex), where

– SA ∶ Set,

102

5.2. Container semantics: an extensional normal form

– PAA ∶ SA → Set,
– PAB ∶ SA → Set, and
– hAindex ∶ (s ∶ SA) → PB(s) → PA(s).

• The extension of CA = (SA, PAA , PAB , hAindex) is the functor JCAK ∶ Fam(Set) → Set
defined by

J(SA, PAA , PAA , hAindex)K(X,Y) =
(Σs ∶ SA)(Πf ∶ PAA (s) →X)(Πx ∶ PAB (s))Y (f(hAindex(s, x))) .

This extends to an action on morphisms in the obvious way.

• Given CA = (SA, PAA , PAB , hAindex) and sets Xref , Yref , the set A-TermCA(Xref , Yref)
is inductively generated by the constructors

aref ∶Xref → A-TermCA(Xref , Yref)
bref ∶ Yref → A-TermCA(Xref , Yref)
arg ∶ JCAK(A-TermCA(Xref , Yref),B-TermCA) → A-TermCA(Xref , Yref)

where B-TermCA(aref(x)) = B-TermCA(arg(x)) = 0 and B-TermCA(bref(x)) = 1.
Given repX ∶ Xref → X , repindex ∶ Yref → X and repY ∶ (y ∶ Yref) → Y (repindex(y)),
the functions

repACA
(repX, repindex, repY) ∶ A-TermCA(Xref , Yref) →X

repBCA
(repX, repindex, repY) ∶ (x ∶ A-TermCA(Xref , Yref)) → Y (repACA

(. . . , x))

are defined by

repACA
(repX, repindex, repY, aref(x)) = repX(x)

repACA
(repX, repindex, repY,bref(x)) = repindex(x)

repACA
(repX, repindex, repY, arg(x)) = JCAK(repACA

(. . .), repBCA
(. . .), x)

repBCA
(repX, repindex, repY, aref(x), y) =!(y)

repBCA
(repX, repindex, repY,bref(x),⋆) = repY(x)

repBCA
(repX, repindex, repY, arg(x), y) =!(y)

• CB = (SB, PBA , nB, PBB , hB, aB), where

– SB ∶ Set,
– PBA ∶ S → Set,
– nB ∶ S → N,

103

5. Semantics

– PBB ∶ (s ∶ S) → Fin(n(s)) → Set,
– hB ∶ (s ∶ S) → (i ∶ Fin(n(s))) → PBB (s, i)

→ A-TermCA(PBA (s), PBB (s,0) + . . . + PBB (s, i − 1)) , and

– aB ∶ (s ∶ S) → A-TermCA(PBA (s), PBB (s,0) + . . . + PBB (s, n(s))),

The extension of the inductive-inductive container (CA,CB) is a functor

JCA,CBK ∶ Dialg(JCAK, U) → Fam(Set) ,

where U ∶ Fam(Set) → Set is the index set functor U(X,Y) =X . The functor JCA,CBK
is defined by

JCA,CBK(X,Y, introA) = (JCAK(X,Y), JCBK(X,Y, introA))

where JCBK ∶ JCAK→ Set is defined by

J(SB, PBA , nB,PBB , hB, aB)K(X,Y, introA)(z)
= (Σs ∶ SB)((Πf ∶ PBA (s) →X)

(Πg0 ∶ (Πx ∶ PBB (s,0))Y (h(s,0, x)))
⋮

(Πgn(s) ∶ (Πx ∶ PBB (s, n(s)))Y (h(s, n(s), x))))
repACA

(f, [h(s,0), . . . , h(s, i)], [g0, . . . , gi], a(s)) ≡X introA(z))

where

h(s,0) = repACA
(f, !, !) ○ hb(s,0)

h(s, i + 1) = repACA
(f, [h(s,0), . . . , h(s, i)], [g0, . . . , gi]) ○ hb(s, i + 1) . ∎

By construction, Corollaries 5.19 and 5.25 together now say that each inductive-
inductive definition can be interpreted as an inductive-inductive container.

The “number” n ∶ S → N is reminiscent of n-ary containers S◁P , where P has type
P ∶ S → Fin(n) → Set [Abbott et al., 2003], except that our n is allowed to vary with
the shape. Of course, if the number of shapes is finite, we can just choose a uniform
n′ = maxs ∶S(n(s)) and pad out the extra positions with empty ones:

P ′
B(s, i) =

⎧⎪⎪⎨⎪⎪⎩

PB(s, i) if i ≤ n(s)
0 otherwise

h′(s, i) =
⎧⎪⎪⎨⎪⎪⎩

h(s, i) if i ≤ n(s)
! otherwise

We then have that JCA, (S,PA, n,PB, h, i)K ≅ JCA, (S,PA, n
′, P ′

B, h
′, i)K. However, in

general, n ∶ S → N can be unbounded.

Example 5.27 (Context and types as an inductive-inductive container) We express the
contexts and types from Example 3.1 as an inductive-inductive container (CCtxt,CTy).

104

5.2. Container semantics: an extensional normal form

Let us start with CCtxt = (SCtxt, PCtxt
A , PCtxt

B , hCtxt
index). The data type Ctxt has two con-

structors, thus we set SCtxt = 2. The first constructor ε has no inductive arguments at all,
thus we choose PCtxt

A (ff) = PCtxt
B (ff) = 0 with hCtxt

index(ff, x) =!(x). The second constructor

▷ ∶ (Γ ∶ Ctxt) → Ty(Γ) → Ctxt

has one Ctxt -inductive and one Ty-inductive argument respectively, thus we choose
PCtxt

A (tt) = PCtxt
B (tt) = 1 with hCtxt

index(tt,⋆) = ⋆. This concludes the definition of CCtxt =
(SCtxt, PCtxt

A , PCtxt
B , hCtxt

index).
We now move on to CTy = (STy, PTy

A , nTy, PTy
B , hTy, aTy). Since also Ty has two

constructors, we let STy = 2 as well. The first constructor ι ∶ (Γ ∶ Ctxt) → Ty(Γ)
has one Ctxt-inductive and no Ty-inductive arguments, so we let PTy

A (ff) = 1 and
nTy(ff) = 0 (with PTy

B (ff) and hTy(ff) trivially given by ex falso quod libet), and finally,
since the index is the only Ctxt-inductive argument, we let aTy(ff) = aref(⋆). The second
constructor

Π ∶ (Γ ∶ Ctxt) → (σ ∶ Ty(Γ)) → Ty(Γ▷ σ) → Ty(Γ)

has one Ctxt-inductive and two Ty-inductive arguments, so we let PTy
A (tt) = 1 and

nTy(tt) = 2 with PTy
B (tt,0) = PTy

B (tt,1) = 1. The index for the first Ty-inductive argu-
ment σ is the Ctxt-inductive argument Γ, so we let hTy(tt,0,⋆) = aref(⋆), while the index
of the second one should be Γ▷σ. Hence we let hTy(tt,1,⋆) = arg(⟨tt, λ .⋆, λ .⋆⟩) since
arg(⟨tt, λ .⋆, λ .⋆⟩) represents the constructor ▷ applied to the only elements Γ and σ
we have access to. Finally, the index targeted by the constructor is Γ, so we again define
aTy(tt) = aref(⋆). ∎

Remark 5.28 The container literature also defines morphisms between containers,
which represent natural transformations between the corresponding functors. Hence
containers and container morphisms form a category Cont, and the embedding Cont→
SetSet is in fact full and faithful. Thus, we can use the locally small category Cont to
represent objects in the (even locally) large functor category SetSet. It is not hard to
define morphisms also between inductive-inductive containers. It would be interesting
to see if there is a corresponding full and faithfulness result also in this case.

The definition of inductive-inductive containers stands on its own; no reference was
made to the axiomatisation in Chapter 3. The price we paid for this was repeating the
definition of A-Term and repA, specialised to the normal form code in Corollary 5.19.
Even though there are no inductively presented codes present in the definition anymore,
the situation is not completely satisfactory, as A-Term is still inductively defined. This
means that constructions on inductive-inductive containers still need to use a small
amount of recursion.

5.2.3 Graded inductive-inductive containers

We now present a subset of inductive-inductive containers, which we call graded
inductive-inductive containers, and which are presented in an induction-free way.

105

5. Semantics

This makes them very easy to reason about. I chose the name graded, since these
inductive-inductive containers correspond to data types where the generalised argu-
ments g ∶ (x ∶ PB(s)) → B(i(x)) in the constructor for the second set B ∶ A→ Set can be
decomposed into arguments which use respectively 0, 1, 2, . . . , n constructors for the
first set A respectively. Not all inductive-inductive containers are of this form, but we
will see that all examples we have considered so far are.

The first part CA of a graded inductive-inductive container is the same as for a
general inductive-inductive container. We give the full definition for completeness (the
reader with a good memory of general inductive-inductive containers can skip straight
to the third bullet point):

Definition 5.29 (Graded inductive-inductive container) A graded inductive-inductive
container (CA,CB) is given by the following data, and decoded the following way:

• CA = (SA, PAA , PAB , hAindex), where

– SA ∶ Set,

– PAA ∶ S → Set,

– PAB ∶ S → Set, and

– hAindex ∶ (s ∶ S) → PB(s) → PA(s).

• The extension of CA = (SA, PAA , PAB , hAindex) is the functor JCAK ∶ Fam(Set) → Set
defined by

J(SA, PAA , PAA , hAindex)K(X,Y) =
(Σs ∶ SA)(Πf ∶ PAA (s) →X)(Πx ∶ PAB (s))Y (f(hAindex(s, x))) .

This extends to an action on morphisms in the obvious way.

• CB = (SB, PBA , nB, PBB , aB), where

– SB ∶ Set,

– PBA ∶ S → Set,

– nB ∶ S → N,

– PBB ∶ (s ∶ S) → (i ∶ Fin(n(s))) → JCAKi(PBA (s), PBB (s,0), . . . , PBB (i−1)) → Set,

– aB ∶ (s ∶ S) → ∑n(s)i=0 JCAK(PBA (s), ⃗PBB (s)),

where JCAK0(X) =X and

JCAKi+1(X,Y1, . . . , Yi+1) =
JCAK(JCAK0(X) + . . . + JCAKi(X,Y1, . . . , Yi), [Y1, . . . , Yi+1]) .

106

5.2. Container semantics: an extensional normal form

The extension of the graded inductive-inductive container (CA,CB) is a functor

JCA,CBK ∶ Dialg(JCAK, U) → Fam(Set) ,

where U ∶ Fam(Set) → Set is the index set functor U(X,Y) =X . The functor JCA,CBK
is defined by

JCA,CBK(X,Y, introA) =
(JCAK(X,Y), λx. (Σy ∶ JCBK(X,Y, introA))JCBKIndexB

(y) ≡X introA(x))

where JCBK is defined by

J(SB, PBA , nB,PBB , aB)K(X,Y, introA)
= (Σs ∶ SB)((Πf ∶ PBA (s) →X)

(Πg0 ∶ (Πx ∶ PBA (s))PBB (s,0, x) → Y (f(x)))
(Πg1 ∶ (Πx ∶ JCAK(PBA (s), PBB (s,0)))PBB (s,1, x) → Y (f(s,1, x)))

⋮
(Πgn(s) ∶ (Πx ∶ JCAKn(s)(PBA (s), PBB (s,0), . . . , PBB (s, n(s) − 1)))
PBB (s, n(s), x) → Y (f(s, n(s), x))))

and JCBKIndexB
(X,Y, introA) ∶ JCBK(X,Y, introA) →X is defined by

JCBKIndexB
(X,Y, introA)(s, f, g0, . . . , gn(s)) = [f(s,0), . . . , f(s, n(s))](a(s))

where

f(s,0) = f
f(s, i + 1) = introA ○ JCAK([f(s,0), . . . , f(s, i)], [g0, . . . , gi]) . ∎

Example 5.30 (Contexts and types as a graded inductive-inductive container) We recast
the contexts and types from Example 5.27 as a graded inductive-inductive container.
The first component CCtxt stays exactly the same. For the second component CTy =
(STy, PTy

A , nTy, PTy
B , aTy), the shapes, Ctxt-positions and number of Ty-positions are the

same as before: the shapes are STy = 2, we have PTy
A (ff) = PTy

A (tt) = 1 and nTy(ff) = 0,
nTy(tt) = 2. The difference compared to Example 5.27 is how we describe the Ty-
positions. With a graded container, we describe how many inductive arguments of a
given constructor-shape we have:

PTy
B (tt,0, x) = 1 (5.3)

PTy
B (tt,1, ⟨ff, y⟩) = 0 (5.4)

PTy
B (tt,1, ⟨tt, y⟩) = 1 (5.5)

Equation (5.3) says that we have one inductive argument not using a constructor, Equa-
tion (5.4) that we have no inductive argument targeting ε (which is represented by

107

5. Semantics

a tuple of the form ⟨ff, y⟩) and Equation (5.5) that we have one inductive argument
targetting the constructor ▷ (which is represented by a tuple of the form ⟨tt, y⟩).

Finally the index of the constructed element should be the only Ctxt-inductive
argument in both constructors for Ty, i.e. no constructor involved in the index, so we
define aTy(ff) = inl(⋆) and aTy(tt) = inl(⋆). ∎

Not every inductive-inductive container has a gradation. Consider for instance the
container which represents the following inductive-inductive definition of (A,B): the
set A has two constructors base ∶ A and introA ∶ A→ A, and B has one constructor

introB ∶ (a ∶ A) → (f ∶ (n ∶ N) → B(elimN(a, λm.λm̃. introA(m̃), n))) → B(a)

In other words, introB has arguments a ∶ A and f(n) ∶ B(intronA(a)) for each n ∶ N. As a
container, this data type can be represented by (CA,CB) where CA = (2, PA(A), λ .0, !)
with PA(A)(ff) = 0 and PA(A)(tt) = 1, and

CB = (1,1,1,N, elimN(aref(⋆), λm.λm̃. arg(tt, m̃)), aref(⋆))

i.e. we have one shape, one A-position and a B-position for each natural number
n, whose index is arg(tt, arg(tt, arg(. . . , aref(1)))) (n occurrences of arg). There is no
corresponding graded container, as this would need an infinite number of arguments

f(0) ∶ B(a)
f(1) ∶ B(introA(a))
f(2) ∶ B(intro2

A(a))
⋮

since a graded container always groups together the arguments that use the same depth
of constructors.

Note that this counterexample is only possible because the inductive-inductive
definition is degenerate: the constructor for A does not refer to B. For proper inductive-
inductive definitions, one could expect a gradation always to exist, since arguments
must be introduced in a certain order: b ∶ B(a) before b′ ∶ B(introA(a, b)), for instance.
However, definitions that syntactically seem proper might in fact be degenerate by e.g.
including arguments such as (x ∶ 0) → B(!A(x)). Even worse, to detect such “false”
arguments, we would need to check if a type is empty or not, which is well-known to
be undecidable (by reduction from the Halting Problem, for instance).

Finitary inductive-inductive definitions, i.e. definitions where the premises of
inductive arguments are isomorphic to Fin(m) for somem ∶ N, are graded. Note that all
examples of proper inductive-inductive definitions we have considered so far indeed
have been finitary.

Proposition 5.31 Every finitary inductive-inductive definition (γA, γB) gives rise to a
graded inductive-inductive container (CA,CB) whose extension J(CA,CB)K is naturally
isomorphic to ArgγA,γB

, i.e.

J(CA,CB)K(X,Y, introA) ≅ ArgγA,γB
(X,Y, introA) ,

108

5.2. Container semantics: an extensional normal form

for all (X,Y, introA) in Dialg(JCAK, U) (naturally in (X,Y, introA)).

Proof. We know by Corollaries 5.19 and 5.25 that (γA, γB) can be written in the form
(5.1) and (5.2), e.g.

γ′A = non-ind(SA, λs.A-ind(PAA (s),B-ind(PAB (s), inr ○ hindex(s),nil)))

and

γ′B = non-ind(SB, λs.A-ind(PBA (s),
B-ind(PBB,0(s), h0(s), . . .B-ind(PBB,n(s)(s), hn(s)(s),nil(a(s))))
´¹¹¹¸¹¹¹¶

n(s) many

)) .

We now define a rank function r ∶ A-Term(γ′A,Xref , Yref) → N by

r(aref(x)) = 0

r(bref(x)) = 0

r(arg(⟨s, ⟨jA, ⟨jB,⋆⟩⟩⟩)) = suc(max
i∶PAA (s)

r(jA(i)))

This maximum is only well-defined because we know PAA (s) is finite. Intuitively, r(x)
is the number of constructors used in the index encoded by x.

We now define
ngB(s) ∶= max

i∶Fin(n(s)),x∶PBB,i(s)
r(hB(s, i, x))

which once again is well-defined because (γ′A, γ′B) is finitary. As an abbreviation, let us
write PBB (s) ∶= PBB,0(s) + . . . + PBB,n(s)(s). Let

f0 ∶ {x ∶ A-Term(γ′A, PBA (s), PBB (s)) ∣ r(x) = 0} → PBA (s) + 1

be the function which maps aref(x) to inl(x) and everything else to inr(⋆). We define
P gBB (s,0) ∶ PBA (s) → Set by

P gBB (s,0, y) ∶= {x ∶ PBB (s) ∣ r([h0(s), . . . , hn(s)(s)](x)) = 0 ∧ f0(x) = inl(y)} .

Similarly, we can define

fi ∶ {x ∶ A-Term(γ′A, PBA (s), PBB (s)) ∣ r(x) = i} → Jγ′AKi(PBA (s), P gBA (s,0), . . . , P gBA (s, i−1))+1

and

P gBB (s, i, y) ∶= {x ∶ PBB (s) ∣ r([h0(s), . . . , hn(s)(s)](x)) = i ∧ fi(x) = inl(y)} .

We finally define agB(s) ∶= fr(a(s))(a(s)). It should be clear that the decoding of
γ′B, which is isomorphic to the decoding of γB, is isomorphic to the decoding of
(SB, PBA , ngB, P

gB
B , agB).

109

5. Semantics

5.3 Reduction to extensional indexed inductive definitions

How strong is the theory of inductive-inductive definitions? Indexed inductive defi-
nitions naturally embed into inductive-inductive definitions: The indexed inductive
definition X ∶ I → Set can be regarded as an inductive-inductive definition of I ′ ∶ Set
and X ∶ I ′ → Set where I ′ is an isomorphic copy of I , i.e. given by one constructor
introI′ ∶ I → I ′ (see Section 3.2.4.2). Hence inductive-inductive definitions are at least as
strong as the theory of indexed inductive definitions. We will now sharpen this result by
showing that the theory of inductive-inductive definitions, with the simple elimination
rules from Section 3.2.5.2, can be interpreted in the extensional theory of indexed induc-
tive definitions. Thus, if there is any difference in proof-theoretical strength between
the two theories, it is either because of extensionality (which is unlikely, as models of
Type Theory which gives upper bounds for its proof theoretical strength usually also
interpret the the equality reflection rule [Setzer, 1996]), or the general elimination rules
presented in Chapter 4.

The general idea of the reduction is to first define “pre-sets” preA ∶ Set and preB ∶ Set
without index information. This makes it possible to define preA and preB using an
ordinary mutual definition (hence a 2-indexed definition), but the lack of precision
means that we have also included junk into our sets. We thus define “goodness pred-
icates” goodA ∶ preA → Set and goodB ∶ preA → preB → Set which singles out the
well-formed elements that respect the original index information. We can then define
A ∶= (Σx ∶ preA)goodA(x) and B(⟨x, g⟩) ∶= (Σy ∶ preB)goodB(x, y) and prove that the
introduction and (simple) elimination rules are sound.

Before we prove the general theorem, let us consider an example. In fact, the
reader is advised to understand this example (and the following Example 5.36) to get a
general idea of the reduction before tackling the general case, which does not offer any
additional technical difficulty.

Example 5.32 (Contexts and types as an indexed inductive definition) How would
we represent the contexts and types from Example 3.1 if we did not have dependent
types? A reasonable approach is to include possibly non-wellformed types, and then
afterwards check that the types in question are well-formed. For this check to be
possible, we still need to store the context, that we believe the type is well-formed in, in
the type, and so, the definition of contexts and types is still simultaneous, although the
typically inductive-inductive phenomenon of contexts appearing as indices of types
has disappeared.

Thus, we take the original definition of contexts and types

ε ∶ Ctxt

Γ ∶ Ctxt σ ∶ Ty(Γ)
Γ▷ σ ∶ Ctxt

Γ ∶ Ctxt
ιΓ ∶ Ty(Γ)

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ▷ σ)
ΠΓ(σ, τ) ∶ Ty(Γ)

110

5.3. Reduction to extensional indexed inductive definitions

and drop all index information, so that we end up with

εpre ∶ preCtxt

Γ ∶ preCtxt σ ∶ preTy

Γ▷pre σ ∶ preCtxt

Γ ∶ preCtxt

ιpre(Γ) ∶ preTy

Γ ∶ preCtxt σ ∶ preTy τ ∶ preTy

Πpre(Γ, σ, τ) ∶ preTy

Given a context Γ ∶ Ctxt or type σ ∶ Ty(∆), we can always erase all “type information”
to get a corresponding precontext pre(Γ) ∶ preCtxt and pretype pre(σ) ∶ preTy. It should
be clear that there are plenty of precontexts and pretypes that are not the erasure of any
proper contexts or types, though. Hence, we cannot expect preCtxt and preTy to satisfy
the same induction principle as Ctxt and Ty, and interpreting the latter as the former
would make the elimination principle unsound. We now define predicates goodCtxt ∶
preCtxt → Set and goodTy ∶ preCtxt → preTy → Set that are true exactly for those
precontexts and pretypes that are actually well-formed; the proposition goodCtxt(Γ) is
true if Γ is a well-formed context, i.e. it is the erasure of some Γ′ ∶ Ctxt, and goodTy(Γ, σ)
is true if σ is a well-formed type in context Γ, i.e. it is the erasure of some σ′ ∶ Ty(Γ′)
where Γ is the erasure of Γ′. We do this by reintroducing the index information, using
a simultaneous indexed inductive definition:

εgood ∶ goodCtxt(εpre)

Γ ∶ preCtxt Γ̃ ∶ goodCtxt(Γ) σ ∶ preTy σ̃ ∶ goodTy(Γ, σ)
(Γ, Γ̃) ▷good (σ, σ̃) ∶ goodCtxt(Γ▷pre σ)

Γ ∶ preCtxt Γ̃ ∶ goodCtxt(Γ)
ιgood(Γ, Γ̃) ∶ goodTy(Γ, ιpre(Γ))

Γ ∶ preCtxt

Γ̃ ∶ goodCtxt(Γ)
σ ∶ preTy

σ̃ ∶ goodTy(Γ, σ)
τ ∶ preTy

τ̃ ∶ goodTy(Γ▷pre σ)
Πgood(Γ, Γ̃, σ, σ̃, τ, τ̃) ∶ goodTy(Γ,Πpre(Γ, σ, τ))

For instance, Πgood(Γ, Γ̃, σ, σ̃, τ, τ̃) says that if Γ is a well-formed context, σ is a well-
formed type in context Γ and τ is a well-formed type in context Γ▷preσ, then Πpre(Γ, σ, τ)
is a well-formed type in the original context Γ.

We now define the interpretation of Ctxt and Ty to be

JCtxtK ∶= (ΣΓ ∶ preCtxt)goodCtxt(Γ)
JTyK(⟨Γ, Γ̃⟩) ∶= (Σσ ∶ preTy)goodTy(Γ, σ)

which shows that the formation rules are sound with respect to the translation. Fur-
thermore, we can validate the introduction rules by pairing up the goodness proofs we
have asked for:

JεK ∶ JCtxtK

111

5. Semantics

JεK = ⟨εpre, εgood⟩

J▷K ∶ (Γ ∶ JCtxtK) → JTyK(Γ) → JCtxtK

⟨Γ, Γ̃⟩J▷K⟨σ, σ̃⟩ = ⟨Γ▷pre σ, (Γ, Γ̃) ▷good (σ, σ̃)⟩

JιK ∶ (Γ ∶ Ctxt) → JTyK(Γ)
JιK(⟨Γ, Γ̃⟩) = ⟨ιpre(Γ), ιgood(Γ, Γ̃)⟩

JΠK ∶ (Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → JTyK(ΓJ▷Kσ) → JTyK(Γ)
JΠK(⟨Γ, Γ̃⟩, ⟨σ, σ̃⟩, ⟨τ, τ̃⟩) = ⟨Πpre(Γ, σ, τ),Πgood(Γ, Γ̃, σ, σ̃, τ, τ̃)⟩

We will get back to the elimination rules in Example 5.36. ∎

We now consider a general inductive-inductive definition. In order to reduce com-
plexity, we work with graded inductive-inductive containers from Section 5.2.3. Recall
that extensionally, all finitary inductive-inductive definitions can be reduced to this
form (and many non-finitary ones too). It should however be stressed that this normal
form only is a convenience for the proof, and not a necessity – we simply choose to
prove this particular version of the theorem in order to avoid induction over codes and
syntactical clutter that obscures the idea behind the proof. Since the general version
of the soundness theorem will require extensional equality anyway, we do not lose
anything by immediately switching to the normal form.

Definition 5.33 Given a graded inductive-inductive container (CA,CB) where CA =
(SA, PAA , PAB , hAindex) and CB = (SB, PBA , nB, PBB , aB), the mutually inductive data types
preA ∶ Set, preB ∶ Set are given by the following constructors:

inpreA ∶ (s ∶ SA) →
(f ∶ PAA (s) → preA) →
(g ∶ PAB (s) → preB) → preA

inpreB ∶ (s ∶ SB) →
(f ∶ PBA (s) → preA) →
(g0 ∶ (x ∶ PBA (s)) → PBB (s,0, x) → preB) →
(g1 ∶ (x ∶ JCAK(PBA (s), PBB (s))) → PBB (s,1, x) → preB) →

⋮

(gnB(s) ∶ (x ∶ JCAKn
B(s)(PBA (s), ⃗

PBB (s))) → PBB (s, nB(s), x) → preB) → preB

Furthermore, the mutually indexed inductive data types goodA ∶ preA → Set and

112

5.3. Reduction to extensional indexed inductive definitions

goodB ∶ preA→ preB → Set are given by the following constructors:

ingoodA ∶ (s ∶ SA) →
(f ∶ PAA (s) → preA) →
(f̃ ∶ (x ∶ PAA (s)) → goodA(f(x))) →
(g ∶ PAB (s) → preB) →
(g̃ ∶ (PAB (s)) → goodB(f(hAindex(s, x)), g(x))) → goodA(inpreA(s, f, g))

ingoodB ∶ (s ∶ SB) →
(f ∶ PBA (s) → preA) →
(f̃ ∶ (x ∶ PBA (s)) → goodA(f(x))) →
(g0 ∶ (x ∶ PBA (s)) → PBB (s,0, x) → preB) →
(g̃0 ∶ (x ∶ PBA (s)) → (y ∶ PBB (s,0, x)) → goodB(f(s,0, x), g0(x, y))) →
(g1 ∶ (x ∶ JCAK(PBA (s), PBB (s))) → PBB (s,1, x) → preB) →
(g̃1 ∶ (x ∶ JCAK(PBA (s), PBB (s))) → (y ∶ PBB (s,1, x)) → goodB(f(s,1, x), g1(x, y))) →

⋮

(gnB(s) ∶ (x ∶ JCAKn
B(s)(PBA (s), ⃗

PBB (s))) → PBB (s, nB(s), x) → preB) →

(g̃nB(s) ∶ (x ∶ JCAKn
B(s)(PBA (s), ⃗

PBB (s))) → (y ∶ PBB (s, nB(s), x)) →
goodB(f(s, nB(s), x), gnB(s)(x, y))) →

goodB([f(s,0), . . . , f(s, n(s))](a(s)), inpreB(s, f, g0, . . . , gnB(s))

where

f(s,0) = f
f(s, i + 1) = inpreA ○ JCAK([f(s,0), . . . , f(s, i)], [g0, . . . , gi]) . ∎

The idea is the same as in Example 5.32: The sets preA and preB drops all index infor-
mation, and goodA and goodB restore it (it might be helpful to compare Definition 5.33
and Definition 5.29).

We have presented the indexed inductive definitions as mutual inductively defined
data types, but it should be clear that they can be presented straightforwardly as indexed
containers or as codes in a system of indexed inductive definitions, with index set 2 (for
a choice between preA and preB). Before we can prove the soundness of the formation
and introduction rules, we need a technical lemma:

Lemma 5.34 Let s, f , gi and f be as in the arguments to ingoodB in Definition 5.33. Then

fst ○ [f(s,0), . . . , f(s, n(s))] = [fst ○ f(s,0), . . . , fst ○ f(s, n(s))] .

113

5. Semantics

Lemma 5.35 (Soundness of the formation and introduction rules) Let (CA,CB) be a
graded container. If we define

JAK ∶= (Σx ∶ preA)goodA(x)
JBK(⟨x,xg⟩) ∶= (Σy ∶ preB)goodB(x, y) ,

then constants introA and introB can be defined so that the introduction rules

x ∶ JCAK(JAK, JBK)
introA(x) ∶ JAK

x ∶ JCBK(JAK, JBK, introA)
introB(x) ∶ JBK(JCBKIndexB

(x))

are valid.

Proof. We begin by defining introA ∶ JCAK(JAK, JBK) → JAK. By the definition of JCAK
and the η rules for Σ types, any x ∶ JCAK(JAK, JBK) is of the form x = ⟨s, ⟨f, g⟩⟩ where

s ∶ SA

f ∶ PAA (s) → (Σx ∶ preA)goodA(x)
g ∶ (x ∶ PAB (s)) → (Σy ∶ preB)goodB(fst(f(h(x))), y) ,

where we have expanded the definition of JAK and JBK. Thus we can define

introA(⟨s, ⟨f, g⟩⟩) ∶= ⟨inpreA(s, fst ○ f, fst ○ g), ingoodA(s, fst ○ f, snd ○ f, fst ○ g, snd ○ g)⟩

We can now do almost the same thing for introB: given x = ⟨s, ⟨f, ⟨g0, ⟨. . . , gnB(s)⟩⟩⟩⟩,
we can use

inpreB(s, fst ○ f, λx. fst ○ g0(x), . . . , λx. fst ○ gnB(s)(x))
as the first component of introB(⟨s, ⟨f, ⟨g0, ⟨. . . , gnB(s)⟩⟩⟩⟩), and we would like to use

ingoodB(s, fst○f, λx. fst○g0(x), λx. snd○g0(x), . . . , λx. fst○gnB(s)(x), λx. snd○gnB(s)(x))

as the second component, but the type is not obviously right: ingoodB(. . .) has type

goodB([fst ○ f(s,0), . . . , fst ○ f(s, n(s))](a(s)), inpreB(. . .)) ,

but needs to have type

goodB(fst(JCBKIndexB
(x)), inpreB(. . .)) =

goodB(fst([f(s,0), . . . , f(s, n(s))](a(s))), inpreB(. . .))

By Lemma 5.34 and the equality reflection principle, these two types are equal and we
can define

introB(⟨s, ⟨f, ⟨g0, . . . , gnB(s)⟩⟩⟩) ∶=
⟨inpreB(s, fst ○ f, λx. fst ○ g0(x), . . . , λx. fst ○ gnB(s)(x)),
ingoodB(s, fst ○ f,λx. fst ○ g0(x), λx. snd ○ g0(x),

. . . ,
λx. fst ○ gnB(s)(x), λx. snd ○ gnB(s)(x))⟩ .

114

5.3. Reduction to extensional indexed inductive definitions

We would also like to show that the elimination rules are valid for JAK and JBK. We
do this for the simple elimination rules from Section 3.2.5.2. Let us once again start
with a concrete example.

Example 5.36 (Elimination rules for contexts and types) For the contexts and types
from Example 5.32, we would like to define elimination constants elimJCtxtK and elimJTyK
of type

elimCtxt ∶ (P ∶ JCtxtK→ Set) → (Q ∶ (Γ ∶ JCtxtK) → JTyK(Γ) → Set) →
(stepε ∶ P (JεK)) →
(step▷ ∶ (Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → P (Γ) → Q(Γ, σ) → P (ΓJ▷Kσ)) →
(stepΠ ∶ (Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → (τ ∶ JTyK(ΓJ▷Kσ)) → P (Γ)

→ Q(Γ, σ) → Q(ΓJ▷Kσ, τ) → Q(Γ, JΠK(Γ, σ, τ))) →
(stepι ∶ (Γ ∶ JCtxtK) → P (Γ) → Q(Γ, JιK(Γ))) →
(Γ ∶ JCtxtK) → P (Γ)

elimTy ∶ (P ∶ JCtxtK→ Set) → (Q ∶ (Γ ∶ JCtxtK) → JTyK(Γ) → Set) →
(stepε ∶ P (JεK)) →
(step▷ ∶ (Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → P (Γ) → Q(Γ, σ) → P (ΓJ▷Kσ)) →
(stepΠ ∶ (Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → (τ ∶ JTyK(ΓJ▷Kσ)) → P (Γ)

→ Q(Γ, σ) → Q(ΓJ▷Kσ, τ) → Q(Γ, JΠK(Γ, σ, τ))) →
(stepι ∶ (Γ ∶ JCtxtK) → P (Γ) → Q(Γ, JιK(Γ))) →
(Γ ∶ JCtxtK) → (σ ∶ JTyK(Γ)) → Q(Γ, σ)

The high-level idea is to use the elimination principle for goodCtxt and goodTy for this –
indeed, the way we have defined the interpretation of the constructors JιK, JΠK etc., the
step functions for elimCtxt and elimTy above are basically uncurried versions of the step
functions for elimgoodCtxt and elimgoodTy. We will face and overcome two problems.

The first problem we meet almost directly. We would like to implement elimCtxt and
elimTy in terms of elimgoodCtxt and elimgoodTy respectively. Let us focus on elimCtxt. Let
all the arguments to elimCtxt be given, in particular P and Q of types

P ∶ ((ΣΓ ∶ preCtxt)goodCtxt(Γ)) → Set

Q ∶ (⟨Γ,Γg⟩ ∶ (ΣΓ ∶ preCtxt)goodCtxt(Γ)) → ((Σσ ∶ preTy)goodTy(Γ, σ)) → Set

The motives for elimgoodCtxt, on the other hand, are of the form

P ′ ∶ (Γ ∶ preCtxt) → goodCtxt(Γ) → Set

Q′ ∶ (Γ ∶ preCtxt) → (σ ∶ preTy) → goodTy(Γ, σ) → Set

We can chooseP ′(Γ,Γg) = P (⟨Γ,ΓG⟩), but forQ′, we have what appears to be a problem:
we have no Γg ∶ goodCtxt(Γ) to give toQ! Luckily, we can extract such a goodness proof

115

5. Semantics

from σg ∶ goodTy(Γ, σ), which we do have. Inspecting the constructors ιgood(Γ, Γ̃)
and Πgood(Γ, Γ̃, σ, σ̃, τ, τ̃), they both contain a goodness proof Γ̃ ∶ goodCtxt(Γ) for the
current context. Hence, by the induction principle for goodTy, we get such a proof
extractGoodΓ(σg) ∶ goodCtxt(Γ) for all σg ∶ goodTy(Γ, σ). Thus, we can choose

P ′(Γ,Γg) ∶= P (⟨Γ,ΓG⟩)
Q′(Γ, σ, σg) ∶= Q(⟨Γ, extractGoodΓ(σg)⟩, ⟨σ,σg⟩)

The step functions we have are now curried versions of the step functions we need, but
there is a second problem: with the motive we have chosen, for Γ, Γg, σ and σg of appro-
priate type we get recursive calls of typeQ(⟨Γ, extractGoodΓ(σg)⟩, ⟨σ,σg⟩), but the elimi-
nation principle we want to implement expects recursive calls of typeQ(⟨Γ,Γg⟩, ⟨σ,σg⟩),
i.e. using the given goodness proof Γg instead of the reconstructed goodness proof
extractGoodΓ(σg). Also this problem can be overcome, this time by noticing that in
fact, all goodness proof of a given type are equal, hence also extractGoodΓ(σg) and Γg.
Also this can be proven using the elimination principle for goodTy and goodCtxt; this
time, a simultaneous induction is necessary. By the equality reflection principle, the
uncurried step functions have the right type and we have succeeded in defining elimCtxt

and elimTy.
The computation rules for elimCtxt and elimTy follow from the computation rules for

elimgoodCtxt and elimgoodTy and the equality reflection rule again. ∎

Armed with the experiences from the example, we can prove in general:

Lemma 5.37 (Extracted, unique goodness)

(i) If yg ∶ goodB(x, y) then there is a term extractGoodx(yg) ∶ goodA(x).

(ii) If xg, x′g ∶ goodA(x) then there is p ∶ xg ≡goodA(x) x
′
g.

Proof. Both statements follow by an easy application of the elimination rules for goodA
and goodB. For (i), we use the motive P (x,xg) = 1, Q(x, y, yg) = goodA(x), i.e. we only
do induction on goodB. For (ii), we use the motiveP (x,xg) = (x′g ∶ goodA(x)) → xg ≡ x′g
and Q(x, y, yg) = (y′g ∶ goodB(x, y)) → yg ≡ y′g.

Using this, we can prove the soundness of the elimination rules for a general graded
inductive-inductive container exactly as in Example 5.36.

Lemma 5.38 (Soundness of the simple elimination rules) Let (CA,CB) be a graded
container, and define JAK, JBK, introA and introB as in Lemma 5.35. Also constants elimA

and elimB can be defined which validates the elimination and computation rules.

Since the data types preA, preB, goodA and goodB are constructed using indexed
inductive definitions only, we have, in proof-theoretical terms, (almost) constructed a
reduction from the theory of inductive-inductive definitions to the theory of indexed
inductive definitions. It is not quite a reduction, since we have not interpreted the
rules dealing with the large types SPA and SPB. It is very possible that these could be

116

5.4. Summary and discussion

coded in the large type IID somehow. However, from a practical or implementation
point of view, this is irrelevant, as we have successfully dealt with the hard part of the
theory, namely the introduction and elimination rules for AγA,γB

and BγA,γB
– there is

no harm in having a large type of codes around if decoding them takes no extra effort.
We summarise the development of this section in a theorem:

Theorem 5.39 The (extensional) theory of inductive-inductive definitions with simple
elimination rules can be interpreted in the extensional theory of indexed inductive
definitions combined with the formation and introduction rules for SPA and SPB.

5.4 Summary and discussion

In this chapter, we have justified the existence of inductive-inductive definitions in
two different ways: first by constructing a model in classical set theory, and then by a
translation to a more well-known type theory.

The set-theoretical model is quite standard. The inductive-inductive definitions are
modelled as inductive definitions are usually modelled in set theory, i.e. by iterating a
monotone operator until a fixed point is reached. Both A and B ∶ A→ Set are generated
at the same time, and since set theory is untyped, it does not matter that A appears in
the “type” of B.

The second justification is more satisfying from a constructive point of view. It
can also, if one so wishes, be seen as a model construction, or alternatively as a proof-
theoretical reduction.

Constructive models The set-theoretical model we have constructed lives in ZFC set
theory + the existence of two inaccessible cardinals. This is mostly for convenience,
as it allows us to reuse results from set theory without worrying if they apply in
our setting or not. It should be clear that a considerably weaker theory is enough to
interpret inductive-inductive definitions set-theoretically, with a reasonable guess being
CZF + REA [Aczel and Rathjen, 2010]. Since we are going to extend the model presented
here to cover also inductive-recursive definitions in Section 6.1, and this will require
considerable more strength, we do not feel so bad about the currently far too strong
theory used.

Translating codes not in container form The reduction to indexed inductive defi-
nitions was only given for codes in “container normal form”. This is not a technical
restriction, but rather a pedagogical one; a general treatment would necessarily do
induction over the codes (as indeed the reduction to the normal form does), which
would make the interpretation of especially the elimination rules unnecessarily hard to
follow. As Examples 5.32 and 5.36 shows, it is perfectly possible to translate definitions
not in normal form using the same recipe.

117

5. Semantics

The need for extensionality The translation of inductive-inductive definitions to
indexed inductive definitions takes place in extensional Type Theory, and we have
made full use of this by applying the equality reflection rule in the interpretation of
both the introduction and the elimination rules. It is not hard to replace these uses
with explicit coercions using subst instead. This way, the introduction and elimination
rules can be interpreted in intensional Type Theory with indexed inductive definitions.
However, the computation rules are still only valid up to propositional equality, even
for closed codes. One possible solution to this problem, suggested by Conor McBride
(private communication) is to use a propositional universe as discussed in 2.1.7 for the
goodness proofs.

Interpreting the general elimination rules The translation from inductive-inductive
definitions to indexed inductive definitions only worked for the simple elimination
rules from 3.2.5.2, and not the general elimination rules. The reason is simple: the
elimination rules of the target theory does not support the “recursive-recursive” nature
of the inductive-inductive elimination rules, where the second component of the motive

Q ∶ (x ∶ A) → B(x) → P (x) → Set

depends on the first componentP ∶ A→ Set. If one were to add these kind of elimination
rules to indexed inductive definitions, then the correspondence between the two theories
would be exact.

118

Chapter6

Extensions

Contents
6.1 Inductive-inductive-recursive definitions 120
6.2 Telescopic inductive definitions and generalised families 136
6.3 Summary . 144

In this chapter, we consider two orthogonal extensions of the theory of inductive-
inductive definitions. Both are natural from a user perspective, and have indeed been
used together by e.g. Danielsson [2007]. In Section 6.1, we combine the theory of
inductive-inductive definitions and the theory of inductive-recursive definitions into
the theory of inductive-inductive-recursive definitions. We extend Dybjer and Set-
zer’s [1999] model construction and combine it with the model construction in Sec-
tion 5.1 to show that the combined theory is sound. Finally, in Section 6.2 we explore
how we can allow an inductive-inductive definition of telescopes

A ∶ Set,

B ∶ A→ Set,

C ∶ (x ∶ A) → B(x) → Set

⋮
of more than two levels, as well as more general “families” such as

A ∶ Set,

B ∶ (A ×A) → Set

or
B ∶ (N ×A) → Set

These extensions are justified via the categorical semantics in Chapter 4. This chapter
gets us closer to a formalisation of all the kinds of definitions used by e.g. Danielsson
[2007], but not all the way there. For instance, yet another extension would be needed
to allow later constructors to depend on earlier ones for the same data type.

119

6. Extensions

6.1 Inductive-inductive-recursive definitions
In inductive-inductive definitions, a setA is defined inductively simultaneously with an
inductive family B ∶ A→ Set. In inductive-recursive definitions, B ∶ A→ Set is instead
defined recursively. But what if we need both an inductively defined B1 ∶ A→ Set and
a recursively defined B2 ∶ A→ Set the same time? We now present an axiomatisation of
inductive-inductive-recursive definitions, which allow the simultaneous definition of

A ∶ Set (inductively)
B ∶ A→ Set (inductively)
T ∶ A→D (recursively)

Such definitions were used by Danielsson [2007] to formalise the well-typed syntax of
Type Theory (defined inductively), together with a hereditary substitution operation
(defined recursively).

Example 6.1 (Danielsson [2007]) We informally present a simplified account of the
first few levels of Danielsson’s construction, extending Example 3.1. The contexts and
the types are as in Example 3.1, i.e. we have a an empty context ε, a context extension
operation ▷, a base type ιΓ in each context Γ and dependent function types ΠΓ(σ, τ).
On top of this, we add inductively defined substitutions Sub ∶ Ctxt→ Ctxt→ Set; their
exact form is not important for our purposes, except that we will need them to include
a “lifting” operation

↑ Γ,∆ ∶ (ρ ∶ Sub(Γ,∆)) → (σ ∶ Ty(Γ)) → Sub(Γ▷ σ,∆▷ (σ/ρ))

often written infix, which lifts a substitution ρ to an extended context with a new
variable by acting like ρ on the old variables and mapping the new variable to itself. In
the type of ↑ , the function / is the application of a substitution that we now will define.
Notice that this makes the definition very simultaneous indeed.

The function /Γ,∆ ∶ Ty(Γ) → Sub(Γ,∆) → Ty(∆) is defined by recursion over Ty(Γ),
written infix and with Γ,∆ implicit:

ιΓ/ρ = ι∆
ΠΓ(σ, τ)/ρ = Π∆(σ/ρ, τ/(ρ ↑ σ))

We will not be able to support this example fully with our axiomatisation, partly
because we need more than two levels (such an extension will be given in Section 6.2),
but mostly because the codomain of /Γ,∆ is Ty(∆), which is defined at the same time
as /Γ,∆, whereas we require the codomain D of recursive functions to be a previously
introduced type. Since constructors are mapped to constructors, this does not seem
to offer any foundational difficulties. This development should be seen as a first step
towards a theory that can justify Danielsson’s construction completely. ∎

We will use IIR as an abbreviation for inductive-inductive-recursive definitions.
Unfortunately, this abbreviation is also used for indexed inductive-recursive definitions,
but we hope that no confusion will arise, as no such definitions occur in this thesis.

120

6.1. Inductive-inductive-recursive definitions

6.1.1 The axiomatisation of inductive-inductive-recursive definitions

The idea behind the axiomatisation is to combine the universe of codes for inductive-
inductive definitions presented in Section 3.2.3 with Dybjer and Setzer’s universe of
codes for inductive-recursive definitions presented in Section 3.2.2. We will follow the
main design of the system for inductive-inductive definitions, while at the same time
incorporate parts of the system for inductive-recursive definitions. The reader is invited
to keep the development in Section 3.2.3 in mind, as there will be many similarities.
The whole construction is parameterised by a (possible large) type D, the codomain of
the recursively defined T ∶ A→D. We will suppress the premise D type from the rules
that follow.

Looking back at the axiomatisation of inductive-inductive definitions, we see that
we make use the functorial action of Arg0

A on morphisms. This will cause us some
trouble, as we mentioned in Section 3.2.2 that the functorial action of ArgIR requires
extensional equality. Luckily, we can get away with function extensionality only and
will thus require that we have it for the rest of this section. In Section 6.1.2, we will
define subsystems of our system corresponding to “normal” inductive-inductive and
inductive-recursive definitions, and both these subsystems will not require even func-
tion extensionality.

6.1.1.1 The universe SP0
IIR,A of descriptions of A

The universe of codes SPIIR,A is quite similar to the universe SPA. The formation rule is
the same:

Xref ∶ Set

SPIIR,A(Xref) type

and we have the same codes, with only nil and A-ind different:

d ∶D
nil(d) ∶ SPIIR,A(Xref)

K ∶ Set γ ∶K → SPIIR,A(Xref)
non-ind(K,γ) ∶ SPIIR,A(Xref)

K ∶ Set γ ∶ (K →D) → SPIIR,A(Xref +K)
A-ind(K,γ) ∶ SPIIR,A(Xref)

K ∶ Set hindex ∶K →Xref γ ∶ SPIIR,A(Xref)
B-ind(K,hindex, γ) ∶ SPIIR,A(Xref)

Compared to A-ind from SPA(Xref), the difference is that the rest of the arguments,
represented by γ ∶ (K →D) → SPIIR,A(Xref +K), now can depend on T applied to the
inductive argument as well. Just like for inductive-recursive definitions, the base case
nil also needs to contain an element d ∶ D to be used as the value of T applied to the
constructor.

121

6. Extensions

For the decoding, also ArgIIR,A has almost the same formation rule as ArgA, except
we now also require a Q ∶X →D to use for the recursive family:

Xref ∶ Set γ ∶ SPIIR,A(Xref)
X ∶ Set

Y ∶X → Set
Q ∶X →D repX ∶Xref →X

ArgIIR,A(Xref , γ,X,Y, repX) ∶ Set

Also the equations for ArgIIR,A are similar to the equations for ArgA, with the only
interesting difference being in the A-ind case: we define

ArgIIR,A(Xref ,A-ind(K,γ),X,Y,Q, repX) =
(Σj ∶K →X)ArgIIR,A(Xref +K,γ(Q ○ j),X,Y,Q, [repX, j])

which can be compared with

ArgA(Xref ,A-ind(K,γ),X,Y, repX) = (Σj ∶K →X)ArgA(Xref +K,γ,X,Y, [repX, j])

and
ArgIR(δ(K,γ),X,Q) = (Σg ∶K →X)ArgIR(γ(Q ○ g),X,Q) .

The full definition of ArgIIR,A is as follows, where we have once again written arguments
that only get passed on in the recursive call as “ ”:

ArgIIR,A(,nil(d), , , ,) = 1

ArgIIR,A(,non-ind(K,γ), , , ,) = (Σx ∶K)ArgIIR,A(, γ(x), , , ,)
ArgIIR,A(Xref ,A-ind(K,γ),X, ,Q, repX) =

(Σj ∶K →X)ArgIIR,A(Xref +K,γ(Q ○ j), , , , [repX, j])
ArgIIR,A(,B-ind(K,hindex, γ), , Y, , repX) =

((x ∶K) → Y ((repX ○ hindex)(x))) ×ArgIIR,A(, γ, , , ,)

Like before, we define

Arg0
IIR,A ∶ SP0

IIR,A → (X ∶ Set) → (Y ∶X → Set) → (Q ∶X → Set) → Set

by Arg0
IIR,A(γ,X,Y,Q) ∶= ArgIIR,A(0, γ,X,Y,Q, !X).

We also need to define the “recursive part” FunIIR , which corresponds to FunIR for
inductive-recursive definitions:

Xref ∶ Set
γ ∶ SPIIR,A(Xref)

X ∶ Set
Y ∶X → Set
Q ∶X →D repX ∶Xref →X x ∶ ArgIIR,A(Xref , γ,X,Y,Q)

FunIIR(Xref , γ,X,Y,Q, repX, x) ∶D

122

6.1. Inductive-inductive-recursive definitions

We have the following defining equations, where we have written “ ” for arguments
handled in the same way as in the equations for ArgIIR,A:

FunIIR(,nil(d), , , , ,⋆) = d
FunIIR(,non-ind(K,γ), , , , , ⟨k, x⟩) = FunIR(, γ(k), , , , x)

FunIIR(,A-ind(K,γ), , ,Q, , ⟨j, x⟩) = FunIIR(, γ(Q ○ j), , , , , x)
FunIIR(,B-ind(K,hindex, γ), , , , , ⟨j, x⟩) = FunIIR(, γ, , , , , x)

We define

Fun0
IIR ∶ (γ ∶ SP0

IIR,A) → (X ∶ Set) → (Y ∶X → Set) → (Q ∶X →D) →
Arg0

IIR,A(γ,X,Y,Q) →D

by Fun0
IIR(γ,X,Y,Q,x) ∶= FunIIR(0, γ,X,Y,Q, !X , x).

6.1.1.2 Towards descriptions of B

Following the axiomatisation in Section 3.2.3.2, we would next like to define an action
of ArgIIR,A on morphisms. What category are we dealing with? After a moment’s
thought, we realise that we are working in the pullback of the index set functor USet ∶
Fam Set → Set along another index set functor UD ∶ FamD → Set: our objects are
triples (A,B,T) where A ∶ Set, B ∶ A → Set and T ∶ A → D. Hence, since D is
discrete, a morphism from (A,B,T) to (A′,B′, T ′) is a pair (f, g) such that f ∶ A→ A′,
g ∶ (x ∶ A) → B(x) → B′(f(x)) and T (x) = T ′(f(x)) ∶ D for each x ∶ A. Assuming
function extensionality, the last equation is equivalent to the equation T = T ′○f ∶ A→D,
and this is the formulation we are going to use.

Lemma 6.2 For each γ ∶ SP0
IIR,A, Arg0

IIR,A(γ) extends to a functor, i.e. given f ∶X →X ′

and g ∶ (x ∶ X) → Y (x) → Y ′(f(x)) such that p ∶ Q ≡A→D Q′ ○ f , one can define
Arg0

IIR,A(γ, f, g, p) ∶ Arg0
IIR,A(γ,X,Y,Q) → Arg0

IIR,A(γ,X ′, Y ′,Q′).

Proof. The proof is the same as the proof of Lemma 3.9, except for one complication: in
the A-ind case, we need to use the proof p ∶ Q ≡A→D Q′ ○ f to make progress. We are
given a pair ⟨j, y⟩ where j ∶K →X and y ∶ ArgIIR,A(Xref +K,γ(Q○ j),X,Y,Q, [repX, j]).
By composing with f ∶ X → X ′, we get a first component f ○ j ∶ K → X ′. By the
induction hypothesis, we have a second component

ArgIIR,A(γ(T ○ j), f, g, p, y) ∶ ArgIIR,A(Xref +K,γ(Q ○ j),X ′, Y ′,Q′, [rep′X, f ○ j]) ,

but we need something of type ArgIIR,A(Xref+K,γ(Q′○f ○j),X ′, Y ′,Q′, [rep′X, f ○j]), i.e.
γ(Q ○ j) should be γ(Q′ ○ f ○ j). For this reason, we asked for a proof p ∶ Q ≡A→D Q′ ○ f ,
which gives rise to a proof p′ ∶= cong(λw. γ(w○j), p) ∶ γ(Q○j) ≡SPIIR,A(Xref+K) γ(Q′○g○j).
We can now transport the term arising from the induction hypothesis along this proof,
giving

ArgIIR,A(A-ind(A,γ), f, g, p, ⟨j, y⟩) = ⟨f ○ j, subst(P, p′,ArgIIR,A(γ(T ○ j), f, g, p, y))⟩

123

6. Extensions

where P (z) ∶= ArgIIR,A(Xref +K,z,X ′, Y ′,Q′, [rep′X, f ○ j]). The other cases are unprob-
lematic.

We also need a kind of coherence property of FunIIR and ArgIIR,A: given f ∶X →X ′,
g ∶ (x ∶ X) → Y (x) → Y ′(f(x)), p ∶ Q ≡A→D Q′ ○ f and x ∶ Arg0

IIR,A(γ,X,Y,Q, repX),
we can either use FunIIR(γ,X,Y,Q) to map x to D directly, or we can first use the
functoriality of Arg0

IIR,A to first send x to Arg0
IIR,A(γ, f, g, p, x) ∶ Arg0

IIR,A(γ,X ′, Y ′,Q′)
and then use FunIIR(γ,X ′, Y ′,Q′). The following lemma says that the result is the same:

Lemma 6.3 For each γ ∶ SP0
IIR,A, f ∶ X → X ′, g ∶ (x ∶ X) → Y (x) → Y ′(f(x)) , p ∶

Q ≡A→D Q′ ○ f and x ∶ Arg0
IIR,A(γ,X,Y,Q), there is a term

Fun0
IIR−coh(γ, x) ∶ Fun0

IIR(γ,X,Y,Q,x) ≡D Fun0
IIR(γ,X ′, Y ′, T ′,Arg0

IIR,A(γ, f, g, p, x)) .

Proof. As usual, we define a more general

FunIIR−coh(γ, x) ∶ FunIIR(γ,X,Y,Q,x) ≡D FunIIR(γ,X ′, Y ′, T ′,ArgIIR,A(γ, f, g, p, x))

for γ ∶ SPIIR,A(Xref) and x ∶ ArgIIR,A(Xref , γ,X,Y,Q) by induction on γ. The base case
nil(d) is trivial (refl ∶ d ≡D d), and the only case which does not follow immediately from
the induction hypothesis is A-ind. After unfolding the definitions, we are looking for a
term of type

FunIIR(γ(Q ○ j), x) ≡D FunIIR(γ(Q′ ○ f ○ j), subst(. . . ,ArgIIR,A(γ(Q ○ j), f, g, p, x)))

By the induction hypothesis, we have a term FunIIR−coh(γ(Q ○ j), x) of type

FunIIR(γ(Q ○ j), x) ≡D FunIIR(γ(Q ○ j),ArgIIR,A(γ(Q ○ j), f, g, p, x))

and we also have a term

p′ ∶= cong(λw. γ(w ○ j), p) ∶ γ(Q ○ j) ≡SPIIR,A(Xref+K) γ(Q′ ○ g ○ j)

derived from p ∶ Q ≡A→D Q′ ○ f . If we apply cong2(FunIIR) from Lemma 2.21 to p′, we
are left with the goal

subst(. . . ,ArgIIR,A(γ(Q ○ j), f, g, p, x)) ≡ subst(. . . ,ArgIIR,A(γ(Q ○ j), f, g, p, x))

which is inhabited by refl. Hence by transitivity, we are done.

We now generalise the construction of A-Term(γ,Xref , Yref) and B-Term(γ,Xref , Yref)
from Section 3.2.3.2. It will be necessary to also include a function FunA-TermIIR(. . .) ∶
A-TermIIR(. . .) → D which is a syntactic representation of the recursive function T ∶
A → D. To be able to define this, we must ask for functions TXref

∶ Xref → D and
TYref

∶ Yref → D. Thus, for γ ∶ SP0
IIR,A, Xref ∶ Set, Yref ∶ Set, TXref

∶ Xref → D and
TYref

∶ Yref →D, we have formation rules

A-TermIIR(γ,Xref , Yref , TXref
, TYref

) ∶ Set

B-TermIIR(γ,Xref , Yref , TXref
, TYref

) ∶ A-TermIIR(γ,Xref , Yref , TXref
, TYref

) → Set

FunA-TermIIR(γ,Xref , Yref , TXref
, TYref

) ∶ A-TermIIR(γ,Xref , Yref , TXref
, TYref

) →D

124

6.1. Inductive-inductive-recursive definitions

The introduction rules for A-TermIIR are the same as the rules for A-Term, except the
need for FunA-TermIIR in the argIIR constructor:

x ∶Xref

aref,IIR(x) ∶ A-TermIIR(γA,Xref , Yref , TXref
, TYref

)
x ∶ Yref

bref,IIR(x) ∶ A-TermIIR(γA,Xref , Yref , TXref
, TYref

)
x ∶ Arg0

IIR,A(γA,A-Term(. . .),B-Term(. . .),FunA-TermIIR(. . .))
argIIR(x) ∶ A-TermIIR(γA,Xref , Yref , TXref

, TYref
)

The functions B-TermIIR and FunA-TermIIR are defined by

B-TermIIR(γA,Xref , Yref , TXref
, TYref

, aref(x)) = 0
B-TermIIR(γA,Xref , Yref , TXref

, TYref
,bref(x)) = 1

B-TermIIR(γA,Xref , Yref , TXref
, TYref

, arg(x)) = 0

FunA-TermIIR(γA,Xref , Yref , TXref
, TYref

, aref(x)) = TXref
(x)

FunA-TermIIR(γA,Xref , Yref , TXref
, TYref

,bref(x)) = TYref
(x)

FunA-TermIIR(γA,Xref , Yref , TXref
, TYref

, arg(x)) = FunIIR(γ, x)

We move on to the interpretation of A-TermIIR and B-TermIIR by defining functions

repA,IIR(. . .) ∶ A-TermIIR(. . .) →X

repB,IIR(. . .) ∶ (x ∶ A-TermIIR(. . .)) → B-TermIIR(. . . , x) → Y (repA,IIR(. . . , x))
FunA-TermIIR−coh(. . .) ∶ (x ∶ A-TermIIR(. . .)) → FunA-TermIIR(γ, x) ≡D Q(repA,IIR(. . . , x))

where quite a lot goes where we have written “. . .”; we have collected these omitted
arguments in Figure 6.1. For obvious reasons, we will suppress as many of these as
possible. Notice that we have included coherence proofs for Q, TXref

and TYref
.

Given all these arguments, we can define

repA,IIR(. . . , repX, . . . , aref,IIR(x)) = repX(x)
repA,IIR(. . . , repindex, . . . ,bref,IIR(x)) = repindex(x)

repA,IIR(. . . , T−coh, TXref
−coh, TYref

−coh, argIIR(x)) =
introA(Arg0

IIR,A(γA, repA,IIR(. . .), repB,IIR(. . .), ext(FunA-TermIIR−coh(. . .)), x))

Note how we used function extensionality ext for the argIIR case. The simultaneously
defined repB,IIR stays the same as repB:

repB,IIR(. . . , aref,IIR(x), y) = !(y)
repB,IIR(. . . , repY,bref,IIR(x),⋆) = repY(y)

repB,IIR(. . . , argIIR(x), y) = !(y)

125

6. Extensions

γA ∶ SP0
IIR,A

Xref ∶ Set

Yref ∶ Set

TXref
∶Xref →D

TYref
∶ Yref →D

X ∶ Set

Y ∶X → Set

Q ∶X →D

introA ∶ Arg0
IIR,A(γ,X,Y,Q) →X

repX ∶Xref →X

repindex ∶ Yref →X

repY ∶ (b ∶ Yref) → Y (repindex(b))
T−coh ∶ (x ∶ Arg0

IIR,A(γ,X,Y,Q)) → Q(introA(γ, x)) ≡D Fun0
IIR(γ, x)

TXref
−coh ∶ (x ∶Xref) → TXref

(x) ≡D Q(repX(x))
TYref

−coh ∶ (x ∶ Yref) → TYref
(x) ≡D Q(repindex(x))

Figure 6.1: Omitted arguments for repA,IIR, repB,IIR, FunA-TermIIR−coh, ArgIIR,B and
IndexIIR,B.

Finally, FunA-TermIIR−coh is defined by case distinction on x ∶ A-TermIIR(. . .); if x =
aref,IIR(y) or x = bref,IIR(z), then TXref

−coh(y) or TYref
−coh(z) respectively gives us what

we need, while Lemma 6.3 together with T−coh takes care of the last case:

FunA-TermIIR−coh(. . . , aref,IIR(y)) = TXref
−coh(y)

FunA-TermIIR−coh(. . . ,bref,IIR(z)) = TYref
−coh(z)

FunA-TermIIR−coh(. . . , argIIR(w)) = trans(FunIIR−coh(γ,w), sym(T−coh(Arg0
IIR,A(. . . ,w)))) .

There is no recursion involved.

6.1.1.3 The universe SP0
IIR,B of descriptions of B

We introduce the universe SPIIR,B of descriptions for B. It will look a lot like SPB, but
we also need syntactic representations TXref

∶Xref →D and TYref
∶ Yref →D for the value

of the recursive function Q on the elements of X we know. Hence we have formation
rule

Xref , Yref ∶ Set TXref
∶Xref →D TYref

∶ Yref →D γA ∶ SPIIR,A

SPIIR,B(Xref , Yref , TXref
, TYref

, γA) type

126

6.1. Inductive-inductive-recursive definitions

We define a γA ∶ SP0
IIR,A ⊢ SP0

IIR,B(γA) type by SP0
IIR,B(γA) ∶= SPIIR,B(0,0, !D, !D.γA) as

usual.
The codes in SPIIR,B are very similar to the codes in SPB, except we now also need

to keep track of TXref
and TYref

.

â ∶ A-TermIIR(γA,Xref , Yref , TXref
, TYref

)
nil(â) ∶ SPIIR,B(Xref , Yref , TXref

, TYref
, γA)

The code nil(â) represents a trivial constructor c ∶ 1 → B(a) (a base case), where the
index a is encoded by â ∶ A-TermIIR(γA,Xref , Yref , TXref

, TYref
).

K ∶ Set γ ∶K → SPIIR,B(Xref , Yref , TXref
, TYref

, γA)
non-ind(K,γ) ∶ SPIIR,B(Xref , Yref , TXref

, TYref
, γA))

The code non-ind(K,γ) represents a non-inductive argument x ∶K, with the rest of the
arguments given by γ(x).

K ∶ Set γ ∶ (t ∶K →D) → SPIIR,B(Xref +K,Yref , [TXref
, t], TYref

, γA)
A-ind(K,γ) ∶ SPIIR,B(Xref , Yref , TXref

, TYref
, γA)

The code A-ind(K,γ) represents an inductive argument j ∶K → A, with the rest of the
arguments given by γ(T ○ j). Notice how TXref

is extended.

K ∶ Set
hindex ∶K → A-TermIIR(. . .) γ ∶ (t ∶K →D) → SPIIR,B(Xref , Yref +K,TXref

, [TYref
, t], γA)

B-ind(K,hindex, γ) ∶ SPIIR,B(Xref , Yref , γA)

The code B-ind(K,hindex, γ) represents an inductive argument with type (x ∶ K) →
B(i(x)), where the index i(x) is determined by hindex, and the rest of the arguments
are given by γ(T ○ i).

We now define the decoding function ArgIIR,B. It has formation rule

ArgIIR,B(. . .) ∶ SPIIR,B(Xref , Yref , TXref
, TYref

, γA) → Set

where “. . .” contains the arguments from Figure 6.1. The defining equations are the
same as for ArgB from Section 3.2.3.3, except that we now also have to build up the
coherence proofs TXref

−coh and TYref
−coh as we go along.

ArgIIR,B(,nil(â)) = 1

ArgIIR,B(,non-ind(K,γ)) = (x ∶K) ×ArgIIR,B(, γ(x))
ArgIIR,B(Xref , , ,X, ,Q, repX, , TXref

−coh, ,A-ind(K,γ))
= (j ∶K →X) ×ArgIIR,B(Xref +K, , [repX, j], , , , [TXref

−coh, (λk. refl)], , γ(Q ○ j))
ArgIIR,B(, Yref , γA, , Y, introA, repX, repindex, repY, ,B-ind(K,h, γ))

= (j ∶ (x ∶K) → Y ((repA(. . .) ○ h)(x))) ×
ArgIIR,B(, Yref +K, , [repindex, repA(. . .) ○ h], [repY, j],

, , [TYref
−coh, (λk. refl)], γ(Q ○ repA(. . .) ○ h))

127

6. Extensions

Finally, we need to define the function IndexIIR,B which picks out the index which is
targeted by the constructor. The definition is exactly the same as for IndexB, but with
the extra book keeping as in the definition of ArgIIR,B. For this reason, we omit the
definition here, confident that the reader will go back to Section 3.2.3.3 if necessary. As
usual, we define Arg0

IIR,B and Index0
IIR,B by supplying 0 for Xref and Yref , and ! for all

functions with domain Xref or Yref . (In particular, this means that the proof obligations

TXref
−coh ∶ (x ∶ 0) →!(x) ≡D Q(!(x))

TYref
−coh ∶ (x ∶ 0) →!(x) ≡D Q(!(x))

disappear, but

T−coh ∶ (x ∶ Arg0
IIR,A(γ,X,Y,Q)) → Q(introA(γ, x)) ≡D Fun0

IIR(γ, x)

still needs to be discharged.)

6.1.1.4 Formation and introduction rules

We are now ready to give the formation and introduction rules for A, B ∶ A→ Set and
T ∶ A → D. They all have the common premises γA ∶ SP0

IIR,A, γB ∶ SP0
IIR,B(γA), which

will be omitted.
Formation rules:

AγA,γB
∶ Set BγA,γB

∶ A→ Set TγA,γB
∶ A→D

Introduction rule for AγA,γB
:

a ∶ Arg0
IIR,A(γA,AγA,γB

,BγA,γB
, TγA,γB

)
introAγA,γB

(a) ∶ AγA,γB

Computation rule for TγA,γB
:

TγA,γB
(introAγA,γB

(a)) = Fun0
IIR(γA,AγA,γB

,BγA,γB
, TγA,γB

, a)

Introduction rule for BγA,γB
:

b ∶ Arg0
IIR,B(γA,AγA,γB

,BγA,γB
, TγA,γB

, introAγA,γB
, λx. refl, γB)

introBγA,γB
(b) ∶ BγA,γB

(Index0
IIR,B(γA,AγA,γB

,BγA,γB
, TγA,γB

, introAγA,γB
, λx. refl, γB))

Notice how we can discharge the assumption

T−coh ∶ (x ∶ Arg0
IIR,A(γA,AγA,γB

,BγA,γB
, TγA,γB

)) →
TγA,γB

(introAγA,γB
(x)) ≡D Fun0

IIR(γA,AγA,γB
,BγA,γB

, TγA,γB
, x)

by λx. refl thanks to the computation rule for TγA,γB
.

128

6.1. Inductive-inductive-recursive definitions

6.1.2 Embedding inductive-recursive and inductive-inductive definitions

Hopefully it is clear how both inductive-recursive and ordinary inductive-inductive
definitions can be seen as subsystems of the system we have just defined. Inductive-
inductive definitions correspond to inductive-inductive-recursive definitions where we
haven chosenD = 1, and inductive-recursive definitions correspond to definitions where
we never make use of the code B-ind. We make this precise by defining translations
between the different universes of codes.

6.1.2.1 Embedding inductive-recursive definitions

We define a translation function Φ ∶ IR D → SPIIR(D),A(Xref) for any Xref ∶ Set.

Φ(ι(d)) = nil(d)
Φ(σ(A,f)) = non-ind(A,Φ ○ f)
Φ(δ(A,F)) = A-ind(A,Φ ○ F)

As a code for the inductive family B, one can for instance use one of the dummy
codes A-ind(1, λ .nil(inr(aref(⋆)))) or non-ind(0, !SP0

B(Φ(γ))). The following proposition
is using function extensionality, since it is proven by induction over codes, and dealing
with equality of higher order objects. It should however be pointed out that no such
assumptions are needed for concrete codes – we really do have a correspondence on
the nose.

Proposition 6.4 The translation Φ ∶ IR D → SPIIR(D),A(Xref) is correct, i.e. for all
Xref ∶ Set, U ∶ Set, T ∶ U →D, repX ∶Xref → U and B ∶ A→ Set, there is a term

Φ−correctArgIR
(γ) ∶ ArgIR(γ,U,T) ≡Set ArgIIR,A(Xref ,Φ(γ), U,B,T, repX)

giving rise to a function ΦArgIR
(γ) ∶ ArgIR(γ,U,T) → ArgIIR,A(Xref ,Φ(γ), U,B,T, repX).

Furthermore, there is a term

Φ−correctFunIR
(γ, x) ∶ FunIR(γ,U,T, x) ≡D FunIIR(Xref ,Φ(γ), U,B,T, repX,ΦArgIR

(γ, x))

for each x ∶ ArgIR(γ,U,T).

Proof. Both terms are straightforwardly defined by induction on γ. The function
ΦArgIR

(γ) can be constructed as ΦArgIR
(γ) ∶= subst(id,Φ−correctArgIR

(γ)) (or simply by
induction on γ).

6.1.2.2 Embedding inductive-inductive definitions

The translation of inductive-inductive definitions to (degenerate) inductive-inductive-
recursive definitions is a little bit more involved, as there are more concepts to translate.
The main idea is to consider inductive-inductive-recursive definitions where the recur-
sive function has codomain D = 1. By Proposition 2.23, all functions T ∶ A→ 1 are then
definitionally equal, e.g. to λx.⋆. We will write “ ” for any function with codomain 1.

129

6. Extensions

We first define a translation function ΨA ∶ SPA(Xref) → SPIIR(1),A(Xref) for any
Xref ∶ Set.

ΨA(nil) = nil(⋆)
ΨA(non-ind(K,γ)) = non-ind(K,ΨA ○ γ)

ΨA(A-ind(K,γ)) = A-ind(K,λ .ΨA(γ))
ΨA(B-ind(K,h, γ)) = B-ind(K,h,ΨA(γ))

In order to define the translation function for codes in SPB(γ), we must first prove the
first translation correct:

Proposition 6.5 The translation ΨA ∶ SPA(Xref) → SPIIR(1),A(Xref) is correct, i.e. there
is a term

Ψ−correctArgA
(γ) ∶ ArgA(Xref , γ,A,B, repX) ≡Set ArgIIR,A(Xref ,Φ(γ),A,B, , repX)

which gives rise to a function

ΨArgA
(γ, f, g) ∶ Arg0

A(γ,A,B) → Arg0
IIR,A(Φ(γ),A′,B′,)

for f ∶ A→ A′ and g ∶ (x ∶ A) → B(x) → B′(f(x)).

Proof. The proof Ψ−correctArgA
(γ) is defined by induction on γ, using function exten-

sionality by necessity. The function ΨArgA
(γ, f, g) can be constructed as

ΨArgA
(γ, f, g) ∶= Arg0

IIR,A(ΨA(γ), f, g, refl) ○ subst(id,Ψ−correctArgA
(γ)) .

Note how we are using that A→ 1 is propositional in order to use refl as a proof that
T = T ′ ○ f for any T ∶ A→D and T ′ ∶ A′ →D.

We now simultaneously define

ΨA-Term(γ) ∶ A-Term(γ,Xref , Yref) → A-TermIIR(ΨA(γ),Xref , Yref , ,)

and

ΨB-Term(γ) ∶ (x ∶ A-Term(γ,Xref , Yref)) →
B-Term(γ,Xref , Yref , x) → B-TermIIR(ΨA(γ),Xref , Yref , , ,ΨA-Term(γ, x))

in a very straightforward way:

ΨA-Term(γ, aref(x)) = aref,IIR(x)
ΨA-Term(γ,bref(x)) = bref,IIR(x)
ΨA-Term(γ, arg(x)) = argIIR(ΨArgA

(γ,ΨA-Term(γ),ΨB-Term(γ), x))

130

6.1. Inductive-inductive-recursive definitions

and

ΨB-Term(γ, aref(x), y) = y
ΨB-Term(γ,bref(x), y) = y
ΨB-Term(γ, arg(x), y) = y

(we need to do the case distinction, as B-Term(. . .) and B-TermIIR(. . .) are not equal for
neutral terms). Notice how the definition of ΨA-Term is making use of the correctness
proof Ψ−correctArgA

(via ΨArgA
).

Finally, we can define ΨB ∶ SPB(Xref , Yref , γA) → SPIIR(1),B(Xref , Yref , , ,ΨB(γA))
for any Xref , Yref ∶ Set and γA ∶ SP0

A.

ΨB(nil(a)) = nil(ΨA-Term(γA, a))
ΨB(non-ind(K,γ)) = non-ind(K,ΨB ○ γ)

ΨB(A-ind(K,γ)) = A-ind(K,λ .ΨB(γ))
ΨB(B-ind(K,h, γ)) = B-ind(K,ΨA-Term(γA) ○ h,λ .ΨB(γ))

We can also prove that the translation ΨB is correct, after proving that repA,IIR and repA

agree, but as this is not very enlightening, we shall skip doing so.

6.1.3 Extending the model

We now recall Dybjer and Setzer’s [1999] model construction for inductive-recursive def-
initions, with the goal of merging it with the model from Section 5.1 to cover inductive-
inductive-recursive definitions as well. As we will see, this will not present much
additional difficulty.

6.1.3.1 Dybjer and Setzer’s model for inductive-recursive definitions

Dybjer and Setzer [1999] constructs a set-theoretical model for inductive-recursive
definitions. The Logical Framework and the standard type formers are interpreted
as in Section 5.1. The inductive-recursive definition described by code γ ∶ IR (D) is
modelled as the result of iterating (ArgIR,FunIR) a suitably large number of times as in
the sequence

0 ⊆ ArgIR(γ,0, !D) ⊆ ArgIR(γ,ArgIR(γ,0, !D),FunIR(γ,0, !D)) ⊆ . . .

with corresponding decoding functions

!D, FunIR(γ,0, !D), ArgIR(γ,ArgIR(γ,0, !D),FunIR(γ,0, !D), . . .

How large is suitably large? Dybjer and Setzer assume that a Mahlo cardinal M exists,
and do M iterations.

Definition 6.6 (Mahlo) A cardinal κ is a (strong) Mahlo cardinal if it is inaccessible and
every normal function f ∶ κ→ κ has an inaccessible fixed point. ∎

131

6. Extensions

Recall that a function f is normal if it is strictly increasing and continuous at limits
(i.e. f(λ) = supβ<λ f(β)). A Mahlo cardinal is large in the technical sense: ZFC cannot
prove its existence1, since if M is a Mahlo cardinal, then VM is a model of ZFC. Hence, if
ZFC could prove that a Mahlo cardinal exists, it would prove its own consistency, which
contradicts Gödel’s second incompleteness theorem. Hence, the consistency proof is
necessarily a relative one, but this is of course always the case.

The constant Set is interpreted as JSetK ∶= VM, and as hinted above, we define
JUγK ∶= UM

γ and JTγK(x) ∶= TM
γ (x) where

Uαγ = ArgIR(γ, ⋃
β<α

Uβγ , ⋃
β<α

T βγ) Tαγ = FunIR(γ, ⋃
β<α

Uβγ , ⋃
β<α

T βγ)

The tricky part is to show that this sequence converges after κ steps for some κ < M, so
that JUγK ∈ JSetK = VM. The proof proceeds in two stages; First, we prove that if we can
find an inaccessible bound κ for cardinality of the premises (index sets) of inductive
arguments as we iterate the initial sequence, then we will find a fixed point after κ
iterations [Dybjer and Setzer, 1999, Lemma 2]. This proof does not use anything beyond
ZFC (and the assumption that the inaccessible bound exists). Using the Mahlo property,
we then find such a bound [Dybjer and Setzer, 1999, Lemma 3], and can then conclude
the proof using the standard argument. Whenever we mention sets or families in the
rest of this section, we mean sets inside the model, i.e. elements of VM.

Before we can start, we need some more technical facts. Recall that the rank rk(x)
of x is the least α such that x ∈ Vα+1.

Lemma 6.7

(i) Vα = {x ∣ rk(x) < α}.

(ii) If x ∈ y then rk(x) < rk(y), and if x ⊆ y, then rk(x) ≤ rk(y).

(iii) For all y, rk(y) = sup{rk(x) + 1 ∣ x ∈ y}.

(iv) Let κ be regular. If A ∈ Vκ then ⋃A ∈ Vκ.

The functor JγK ∶= (ArgIR(γ),FunIR(γ)) is monotone in the following sense:

Lemma 6.8 Let ϕ be an IR code and (U,T), (U ′, T ′) objects of Fam ∣C∣. Assume U ⊆ U ′

and T ′ ↾ U = T . Then

(i) ArgIR(ϕ,U,T) ⊆ ArgIR(ϕ,U ′, T ′), and

(ii) FunIR(ϕ,U ′, T ′) ↾ ArgIR(ϕ,U,T) = FunIR(ϕ,U,T).

1Assuming that ZFC is consistent, of course.

132

6.1. Inductive-inductive-recursive definitions

Definition 6.9 Given an IR code ϕ and an object (U,T) of Fam ∣C∣, the set Aux(ϕ,U,T) ⊆
VM of premises of inductive arguments of φwith respect to U , T is defined by induction
over ϕ:

Aux(ι(d), U, T) = ∅
Aux(σ(A,ϕ), U, T) = ⋃

x∈A
Aux(ϕ(x), U, T)

Aux(δ(A,ϕ), U, T) = {A} ∪ ⋃
f ∶A→U

Aux(ϕ(T ○ f), U, T) ∎

Remark 6.10 We define Aux differently compared to Dybjer and Setzer [1999]: We
collect all the sets we are interested in, whereas they use products and coproducts to
build one big set that “contain” all interesting sets.

Lemma 6.11 Let κ be inaccessible and (Uα, Tα)α<κ be a monotone κ-sequence of objects
of Fam ∣C∣, i.e. if α < β then Uα ⊆ Uβ and T β ↾ Uα = Tα. Assume for some α0 < κ that

Aux(ϕ,Uα, Tα) ⊆ Vκ (6.1)

for all α0 ≤ α < κ. Then ArgIR(ϕ,U,T) is κ-continuous in (U,T), i.e.

ArgIR(ϕ, ⋃
α<κ

Uα, ⋃
α<κ

Tα) = ⋃
α<κ

ArgIR(ϕ,Uα, Tα) .

Notation. For readability, let us write ⋃α<κ(Uα, Tα) for (⋃α<κUα,⋃α<κ Tα).

Proof. The direction ⊇ follows immediately from Lemma 6.8. We prove ⊆ by induction
over ϕ:

• If ϕ = ι(d), then

ArgIR(ι(d), ⋃
α<κ

(Uα, Tα) = 1 = ⋃
α<κ

1 = ⋃
α<κ

ArgIR(ι(d), Uα, Tα) .

• If ϕ = σ(A,ϕ′), then first note that since Aux(σ(A,ϕ′), Uα, Tα) ⊆ Vκ, we have
Aux(ϕ′(x), Uα, Tα) ⊆ Vκ for all α0 ≤ α < κ and x ∈ A by the definition of Aux. Now

ArgIR(σ(A,ϕ′), ⋃
α<κ

(Uα, Tα) = Σx∈AArgIR(ϕ′(x), ⋃
α<κ

(Uα, Tα)

⊆ Σx∈A ⋃
α<κ

ArgIR(ϕ′(x), Uα, Tα)

= ⋃
α<κ

Σx∈AArgIR(ϕ′(x), Uα, Tα)

= ⋃
α<κ

ArgIR(σ(A,ϕ′), Uα, Tα)

where the inclusion follows from the induction hypothesis.

133

6. Extensions

• If ϕ = δ(A,ϕ′), then assume a ∈ ArgIR(δ(A,ϕ′),⋃α<κUα,⋃α<κ Tα). We want to
find α < κ such that a ∈ ArgIR(δ(A,ϕ′), Uα, Tα). We know a = ⟨f, y⟩ for some
f ∶ A→ ⋃α<κUα and

y ∈ ArgIR(ϕ′(⋃
α<κ

Tα ○ f), ⋃
α<κ

(Uα, Tα).

Claim: f ∶ A→ ⋃α<β Uα for some β < κ.
Proof of claim. Assume not, i.e. for all β < κ there exists x ∈ A such that f(x) ∉
⋃α<β Uα. By (6.1), we have A ∈ Vκ, i.e. rk(A) < κ by Lemma 6.7(i). We define a
strictly increasing function g ∶ rk(A) → κ by transfinite recursion:

g(γ) = min{β ∣ (∀γ′ < γ)(g(γ′) < β) ∧ f[A ∩ Vγ] ⊆ ⋃
α<β

Uα}

By assumption, sup g = κ which contradicts the regularity of κ. Hence f ∶ A →
⋃α<β Uα for some β < κ.
Since ⋃α<β Uα ⊆ Uβ , we particularly have f ∶ A→ Uβ , and w.l.o.g. we can assume
α0 ≤ β (if not, choose β′ ∶= α0; we still have f ∶ A → Uβ

′ since β < β′, hence
Uβ ⊆ Uβ′). For β ≤ α < κ we have f ∶ A→ Uα and thus

Aux(ϕ′(Tα ○ f), Uα, Tα) ⊆ Vκ

by (6.1). Hence by the induction hypothesis, there exists α′ such that

y ∈ ArgIR(ϕ′(⋃
α<κ

Tα ○ f), Uα′ , Tα′) = ArgIR(ϕ′(Tα
′ ○ f), Uα′ , Tα′)

and with α = max{β,α′}, we have a = ⟨f, y⟩ ∈ ArgIR(δ(A,ϕ′), Uα, Tα) as required.

The proof of the following lemma is the only place where we use the existence of a
Mahlo cardinal:

Lemma 6.12 Let ϕ be an IR code and (Uα, Tα)α the initial sequence of the associated
functor. There exists an inaccessible κ such that

Aux(ϕ,Uα, Tα) ⊆ Vκ

for all α < κ.

Proof. The strategy for the proof is as follows: we define an increasing function
f ∶ Ord→ Ord, which tells you how much further up the cumulative hierarchy you need
to go to contain one iteration of ArgIR(γ). The important property of f will be

if Uβ
′ ⊆ Vβ then Uβ

′+1 ∪Aux(γ,Uβ′ , T β′) ⊆ Vf(β) (6.2)

for all β′ < M. We then show that f ∶ M→M and use the Mahlo property to find a fixed
point κ of f . Finally we show Aux(ϕ,Uα, Tα) ⊆ Vκ by induction on α.

134

6.1. Inductive-inductive-recursive definitions

The function f ∶ Ord→ Ord is defined by transfinite recursion:

f(β) = min{α ∣(∀β′ < β)(f(β′) < α) ∧
(∀β′ < M)(Uβ′ ⊆ Vβ Ô⇒ Uβ

′+1 ∪Aux(γ,Uβ′ , T β′) ⊆ Vα)}

The first conjunct makes sure that f is increasing, and the second makes (6.2) true.
Claim: f ∶ M→M.
Proof of claim. Let β < M and note that

f(β) = min{α ∣(∀β′ < β)(f(β′) < α) ∧
(∀β′ ∈ {β′ ∈ M ∣ Uβ′ ⊆ Vβ})(Uβ

′+1 ∪Aux(γ,Uβ′ , T β′) ⊆ Vα)} ,

further that B ∶= {β′ ∈ M ∣ Uβ′ ⊆ Vβ} ∈ Vβ+1 ⊆ VM so that ∣B∣ < M by Proposi-
tion 5.10(iv). For each β′ ∈ B, we have Uβ′+1 ∪ Aux(γ,Uβ′ , T β′) ⊆ VM and hence
Uβ

′+1 ∪ Aux(γ,Uβ′ , T β′) ⊆ Vαβ′ for some αβ′ < M since M is a limit. Thus f(β) ≤
supβ′ αβ′ < M by the regularity of M.

So f is an increasing function on M, however f need not be continuous at limits,
hence not normal and the Mahlo property might not apply. To fix this, we define a new
function θ: let for α < M θ(α) = fα(0).
Claim: θ ∶ M→M, and θ is normal.
Proof of claim. We prove that θ(α) < M for α < M by transfinite induction over α. The
base case and successor case are clear, since f ∶ M→M. If λ < M is a limit, then θ ∶ λ→M
is a normal function so that θ(λ) = supβ<λ θ(β) < M by the regularity of M. Finally θ is
increasing since f is, and continuous at limits by definition.

Hence by the Mahlo property, θ has an inaccessible fixed point κ < M.
Claim: f ∶ κ→ κ.
Proof of claim. Assume α < κ. Since κ is a limit, α < β for some β < κ, and β ≤ θ(β) since
θ is increasing. Thus

f(α) < f(β) ≤ f(θ(β)) = θ(β + 1) < θ(κ) = κ

i.e. f ∶ κ→ κ.
This combined with (6.2) gives us a very useful fact:

if Uβ
′ ⊆ Vβ then Uβ

′+1 ∪Aux(γ,Uβ′ , T β′) ⊆ Vκ (6.2′)

for all β < κ (since f(β) < κ, hence Vf(β) ⊆ Vκ).
Finally, we prove that Uα ⊆ Vκ for all α < κ by induction on α. By (6.2′), it then

immediately follows that Aux(ϕ,Uα, Tα) ⊆ Vκ.

• If α = 0, then U0 = ∅ ⊆ Vκ.

• If α = β + 1, then Uβ ⊆ Vκ by the induction hypothesis, and we are done by (6.2′).

• If α = λ limit, then Uλ = ⋃β<λUβ ⊆ Vκ by the induction hypothesis.

135

6. Extensions

Remark 6.13 At a glance, it might seem that the proof is independent of the particular
definition of Uα and Aux(ϕ,Uα, Tα). However, we are making use of the particular
definition of U0 and Uλ, and that Aux(ϕ,Uα, Tα ⊆ VM.

Theorem 6.14 Let ϕ be an IR code. Then JϕK has an initial algebra.

Proof. Feeding Lemma 6.8 and Lemma 6.12 into Lemma 6.11, we get that

ArgIR(ϕ, ⋃
α<κ

Uα, ⋃
α<κ

Tα) = ⋃
α<κ

ArgIR(ϕ,Uα, Tα)

= ⋃
α<κ

Uα+1

= ⋃
α<κ

Uα .

By Lemma 6.8, FunIR(ϕ,⋃α<κUα,⋃α<κ Tα) = ⋃α<κ Tα, so that the initial sequence con-
verges after κ steps. By Adámek et al. [2010, Thm 3.1.4], JϕK has an initial algebra.

6.1.3.2 A model for inductive-inductive-recursive definitions

We can now reap the benefits of Dybjer and Setzer’s labour, and combine their model
with our from Section 5.1. As mentioned in Remark 6.13, there are not many things that
need to be rechecked when we try to deploy the proof in the new setting. The proof of
Theorem 6.14 is the same, mutatis mutandis. This shows that the judgements AγA,γB

∶
Set and TγA,γB

∶ AγA,γB
→ Set indeed are soundly interpreted in the model. Finally,

BγA,γB
∶ AγA,γB

→ Set is taken care of as before by (a slight variation of) Theorem 5.7.

Theorem 6.15 There is a model of the theory of inductive-inductive-recursive defini-
tions that can be constructed using ZFC and the existence of a Mahlo cardinal.

6.2 Telescopic inductive definitions and generalised families

In this section, we extend the theory to accommodate some more liberal uses of
inductive-inductive like definitions. We saw the need for this already in Section 3.1,
where the second set B often was indexed not only by A, but by e.g. A ×A or N ×A.
We cover such generalised families in Section 6.2.1. In Section 6.2.2, we explore another
extension which is needed for Danielsson’s [2007] and Chapman’s [2009] formalisations
of Type Theory inside Type Theory: an inductive-inductive definition of not just A and
B, but of a whole telescope

A ∶ Set,

B ∶ A→ Set,

C ∶ (x ∶ A) → B(x) → Set

⋮

136

6.2. Telescopic inductive definitions and generalised families

6.2.1 Generalised families

In this section, we seek to replace families of the form

A ∶ Set , B ∶ A→ Set

with more general families

A ∶ Set , B ∶ F (A) → Set (6.3)

for some type former F ∶ Set → Set, for instance F (X) = X × X (Example 3.3) or
F (X) = N×X (Example 3.2). As is often the case, it will not be enough that F only acts
on types, instead we need F ∶ Set→ Set to be a functor. In this situation, pairs (A,B) as
in (6.3) naturally form a category:

Definition 6.16 Let F ∶ Set→ Set be a functor. The category FamF (C) has objects pairs
(A,B) where A ∶ Set and B ∶ F (A) → C. A morphism from (A,B) to (A′,B′) is a pair
(f, g) where f ∶ A→ A′ is a function and g ∶ B → B′ ○ F (f) is a natural transformation,
i.e. g ∶ (x ∶ F (A)) → B(x) → B′(F (f)(x)). ∎

We recover FamC as FamId(C). Note that it is crucial that F preserves identities
and composition to be able to define them in FamF (C). Alternatively, FamF (C) can be
described as the lax comma category F ↓ KC where KC ∶ Set → Cat is the constantly
C-valued functor and the set F (X) is considered as a discrete category. It is not clear if
this is helpful for our purposes, and so, we will not develop this view further.

The goal is now to show that FamF (Set) is a Category with Families for well-behaved
functors F , so that the development in Chapter 4 can be repeated, but with FamF (Set)
in the place of Fam Set. By Theorem 4.28, it is enough to show that FamF (Set) has finite
limits, which it does if F preserves pullbacks:

Lemma 6.17 If F ∶ Set → Set preserves pullbacks and C has finite limits, then also
FamF (C) has finite limits.

Proof. We show that FamF (C) has a terminal object and pullbacks. The terminal object
in FamF (C) is 1 = (1Set, λ .1C). The pullback of (f, g) ∶ (A,B) → (C,D) and (f ′, g′) ∶
(A′,B′) → (C,D) is (A ×C A′,B′′) where A ×C A′ is the pullback of f and f ′, and
B′′ can be defined since F preserves pullbacks: it is enough to define B′′(x) for x ∶
F (A) ×F (C) F (A′) ≅ F (A ×C A′), but we can assume that this is the standard pullback
of sets, i.e. x = ⟨y, z⟩ with F (f)(y) = F (f ′)(z). Thus we can define B′′(⟨y, z⟩) =
B(y)×D(F (f)(y))B

′(z). The unique mediating morphism is inherited from the pullbacks
in Set and C.

Note that Proposition 4.35 (and its proof) is generalised by this lemma. Let us
quickly check that the functors F ∶ Set→ Set involved in Examples 3.2 and 3.3 satisfy
the condition of preserving pullbacks. In Example 3.3, the functor in question was
defined by F (X) =X ×X . It can easily be checked that F is right adjoint to the functor
G defined by G(Y) = Y + Y , hence since right adjoints preserve limits, F preserves

137

6. Extensions

pullbacks. In Example 3.2, we are instead using the functor defined by F ′(X) = N ×X ,
which cannot be a right adjoint, since it does not preserve terminal objects. It does,
however, preserve pullbacks: Let f ∶ A→ C and g ∶ B → C be given and consider their
pullback object

A ×C B = {⟨x, y⟩ ∶ A ×B ∣ f(x) = g(y)} .

Recall that F (f) = id × f ∶ N ×A→ N ×C, so

F (A) ×F (C) F (B) = {⟨⟨n,x⟩, ⟨m,y⟩⟩ ∶ (N ×A) × (N ×B) ∣ ⟨n, f(x)⟩ = ⟨m,g(y)⟩}
≅ {⟨n,x, y⟩ ∶ N ×A ×B ∣ ⟨n, f(x)⟩ = ⟨n, g(y)⟩}
≅ N × (A ×C B) = F (A ×C B) .

6.2.1.1 Inductive-inductive definitions of generalised families

By Theorem 4.28, we know that FamF (Set) is a Category with Families, and inspecting
the construction of finite limits in FamF (C), we see that the index set functor U ∶
FamF (C) → Set defined byU(A,B) = A)preserves finite limits. Hence, by Theorem 4.37
also Dialg(ArgA, U) is a Category with Families for any functor ArgA ∶ FamF (Set) → Set,
where we of course should think of ArgA as a suitable strictly positive functor which
describes the domain of the constructor for the first set A. The rest of the construction
from Section 4.1.2 is exactly the same, and we end up with a generalised notion of an
inductive-inductive definition of A ∶ Set, B ∶ F (A) → Set for each pullback-preserving
functor F ∶ Set→ Set, which can be represented by two functors

ArgA ∶ FamF (Set) → Set Arg ∶ Dialg(ArgA, U) → FamF (C)

with U ○ Arg = ArgA ○ V , where U ∶ FamF (C) → Set is the index set functor and
V ∶ Dialg(ArgA, U) → FamF (C) is the forgetful functor V (A,f) = A.

Each such pair of functors give rise to a Category with Families EArg, and Theo-
rems 4.41 and 4.42 apply: if this category has an initial object, we have a reasonable
notion of elimination rules, and if we have elimination rules, then EArg has a weakly
initial object. If we were to design a syntactical system of codes for such functors, like
in Chapter 3, it seems reasonable to think that we could also get a strongly initial object
from the elimination rules like in Theorem 4.43.

6.2.2 Towers of inductive-inductive definitions

We now extend the theory in another direction, namely to the simultaneous definition of
a whole telescope (of fixed length) of sets. Let us first see that this is useful by considering
an extension of Example 3.1, closer to what is actually presented in Danielsson [2007]:

Example 6.18 We extend the contexts and types from Example 3.1 with terms as well.
The contexts stay the same:

ε ∶ Ctxt

Γ ∶ Ctxt σ ∶ Ty(Γ)
Γ▷ σ ∶ Ctxt

138

6.2. Telescopic inductive definitions and generalised families

For types, we keep the base type ι and function types ΠΓ(σ, τ), but anticipating the
definition of the terms, we also add a weakening operation: if τ is a type in context
Γ, then τ should also be a type in context Γ▷ σ for all types σ. We encode this with a
constructor WkΓ,σ(τ):

Γ ∶ Ctxt
ιΓ ∶ Ty(Γ)

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ▷ σ)
ΠΓ(σ, τ) ∶ Ty(Γ)

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ)
WkΓ,σ(τ) ∶ Ty(Γ▷ σ)

To see that the definition of terms can also depend on the definition of types, so that
an inductive-inductive definition is really necessary, we could also consider to add a
universe set with a decoding function el. We should then say that for each term t of
type set, el(t) is a type, which we can do in the following way:

Γ ∶ Ctxt
setΓ ∶ Ty(Γ)

Γ ∶ Ctxt t ∶ Tm(Γ, setΓ)
elΓ(t) ∶ Ty(Γ)

However, this would require yet another extension (with no particular technical difficul-
ties), namely that later constructors for the same set can depend on earlier constructors,
and so we leave out the universe and its decoding from our example.

Finally, we introduce some terms. First, we always have a term in context Γ, x ∶ A,
namely the variable x. In our nameless de Bruijn representation, we will write top
for this variable. We also add a weakening wk of terms as well, so that we can reach
variables further into our context, and not just the outermost one. Finally, we add
lambda abstractions, written lam(t).

Γ ∶ Ctxt σ ∶ Ty(Γ)
topΓ,σ ∶ Tm(Γ▷ σ,WkΓ,σ(σ))

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ) t ∶ Tm(Γ, τ)
wkΓ,σ,τ(t) ∶ Tm(Γ▷ σ,WkΓ,σ(τ))

Γ ∶ Ctxt σ ∶ Ty(Γ) τ ∶ Ty(Γ▷ σ) t ∶ Tm(Γ▷ σ, τ)
lamΓ,σ,τ(t) ∶ Tm(Γ,ΠΓ(σ, τ)) ∎

The strategy is the same as in the last section: we will generalise Fam(Set) to a
category Famn(Set) consisting of telescopes of length n, and show that this category is
still a Category with Families.

Definition 6.19 The category Famn(C) is defined by recursion over n ∶ N as follows:

Fam0(C) ∶= C
Famn+1(C) ∶= Fam (Famn(C)) ∎

Thus, Fam1(C) is just FamC, and Famn(C) can be explicitly described as having

139

6. Extensions

objects (n + 1)-tuples (A,B1, . . . ,Bn), where

A ∶ Set

B1 ∶ A→ Set ,

B2 ∶ (x0 ∶ A) → B1(x0) → Set ,

B3 ∶ (x0 ∶ A) → (x1 ∶ B1(x0)) → B2(x0, x1) → Set ,

⋮
Bn ∶ (x0 ∶ A) → (x1 ∶ B1(x0)) → . . .→ Bn−1(x0, . . . , xn−2) → Set .

We see that Fam2(Set) indeed has the right structure to model the contexts, types and
terms from Example 6.18. There is a chain of projection functors

C Fam1(C)
U0

oo Fam2(C)
U1

oo Fam3(C)
U2

oo . . .oo Famn(C)
Un−1

oo

defined byUk(A,B1, . . . ,Bk,Bk+1) = (A,B1, . . . ,Bk). Let us writeUi,k for the composite

Ui,k ∶= Ui ○Ui+1 ○ . . . ○Uk ∶ Famk+1(C) → Fami(C) .

By iterating Proposition 4.35 (FamC has finite limits if C does) n times, we can prove:

Lemma 6.20 The category Famn(Set) has all finite limits, and all projection functors
Ui,k preserve them.

6.2.2.1 Inductive-inductive definitions of telescopic families

We construct a Category with Families that represent telescopic inductive-inductive
definitions, generalising the construction in Section 4.1.2. Before we carry out the
construction for an arbitrary telescope (A,B1, . . . ,Bn), let us do the concrete case n = 3;
the pattern should be clear from this example already. See Figure 6.2 for an overview
of what is now to come.

The first piece of data needed to give an inductive-inductive definition of the tele-
scope (A,B1,B2,B3) is a functor

ArgA ∶ Fam3(Set) → Set

which we should think of as describing the domain of the constructor for the first set A.
The constructor for the family B1 ∶ A→ Set can make use of the constructor for A, and
is thus represented by a functor

ArgB1
∶ Dialg(ArgA, U0,2) → Fam(Set)

such that U0 ○ ArgB1
= ArgA ○ V0 where V0 ∶ Dialg(ArgA, U0,n) → Fam3(Set) is the for-

getful functor V0(X,f) = X , i.e. the first component of ArgB1
agrees with ArgA. Just

like in Section 4.1.2, we must now make sure that the dialgebra that represents the
constructor for B1, but also contains a morphism for the constructor for A, actually

140

6.2. Telescopic inductive definitions and generalised families

contains the “right” constructor for A. Once again, we do so by equalising appropriate
functors: the forgetful functor V1 ∶ Dialg(ArgB1

, U1,2 ○ V0) → Dialg(ArgA, U0,2), and the
functor (V0, U0) ∶ Dialg(ArgB1

, U1,2○V0) → Dialg(ArgA, U0,2) defined by (V0, U0)(X,f) =
(V0(X), U0(f)). This is well-defined since

U0(f) ∶ U0(ArgB1
(X)) → U0(U1,2(V0(X)))

but U0 ○ArgB1
= ArgA ○ V0 and U0 ○U1,2 = U0,2, hence

U0(f) ∶ ArgA(V0(X)) → U0,2(V0(X))

and (V0(X), U0(f)) is indeed an (ArgA, U0,2)-dialgebra. Write Eq(V1, (V0, U0)) for the
equaliser category andE1 ∶ Eq(V1, (V0, U0)) ↪ Dialg(ArgB1

, U1,2○V0) for the embedding.
Explicitly, Eq(V1, (V0, U0)) has objects (A,B1,B2,B3, c, d) where

c ∶ ArgA(A,B1,B2,B3) → A

d ∶ (x ∶ ArgA(A,B1,B2,B3)) → Arg′B1
(A,B1,B2,B3, c, x) → B1(c(x))

where Arg′B1
is the second component of ArgB1

. By passing to the equaliser category,
we have made sure that the c occurring in Arg′B1

and the c occurring in B1 are the same.
Thus, this is the domain of the functor representing the constructor for B2; we require
a functor

ArgB2
∶ Eq(V1, (V0, U0)) → Fam2(Set)

such thatU1○ArgB2
= ArgB1

○V1○E1 – once again, the first component of ArgB2
must agree

with the earlier functors. Again, we pass to the equaliser category, this time of the functor
E1 ○ V2 composed of the embedding E1 ∶ Eq(V1, (V0, U0)) → Dialg(ArgB1

, U1,2 ○ V0) and
the forgetful functor V2 ∶ Dialg(ArgB2

, U2 ○ V0 ○ V1 ○ E1) → Eq(V1, (V0, U0)), and the
functor (V1 ○ E1, U1) defined by (V1 ○ E1, U1)(X,f) = (V1(E1(X)), U1(f)). The final
piece of data we require to describe our telescopic inductive-inductive definition is a
functor

ArgB3
∶ Eq(E1 ○ V2, (V1 ○E1, U1)) → Fam3(Set)

such that U2 ○ ArgB3
= ArgB2

○ V2 ○ E2, which describes the constructor for B3. The
category EArgA,ArgB1

,ArgB2
,ArgB3

whose initial object is our intended inductive-inductive
definition, finally, is the equaliser of the functor E2 ○ V3 ∶ Dialg(ArgB3

, V0 ○ V1 ○ E1 ○
V2 ○ E2) → Dialg(ArgB2

, U2 ○ V0 ○ V1 ○ E1) and the functor (V2 ○ E2, U2) defined by
(V2 ○E2, U2)(X,f) = (V2(E2(X)), U2(f)). All functors involved are summarised in a
diagram in Figure 6.2.

Example 6.21 The contexts, types and terms from Example 6.18 are represented by the
three functors

ArgCtxt ∶ Fam2(Set) → Set

ArgTy ∶ Dialg(ArgCtxt, U0,1) → Fam(Set)
ArgTm ∶ Eq(V1, (V0, U0)) → Fam2(Set) ,

141

6. Extensions

Set Fam3(Set)ArgAoo

Fam(Set)

U0

OO

Dialg(ArgA, U0,2)
ArgB1oo

V0

OO

Fam2(Set)

U1

OO

Eq(V1, (V0, U0))
ArgB2oo � � E1 // Dialg(ArgB1

, U1,2 ○ V0)

V1

kk

Fam3(Set)

U2

OO

Eq(E1 ○ V2, (V1 ○E1, U1))
ArgB3oo � � E2 // Dialg(ArgB2

, U2 ○ V0 ○ V1 ○E1)

V2

kk

Eq(E2 ○ V3, (V2 ○E2, U2)) �
� E3 // Dialg(ArgB3

, V0 ○ V1 ○E1 ○ V2 ○E2)

V3

kk

Figure 6.2: Functors for telescopic inductive-inductive definitions of length n = 3.

defined by (we leave out the universe, as it is not covered by the current formalisation,
as discussed in Example 6.18)

ArgCtxt(Ctxt,Ty,Tm) = 1 + (ΣΓ ∶ Ctxt)Ty(Γ)
ArgTy(Ctxt,Ty,Tm, introCtxt) = (ArgCtxt(Ctxt,Ty,Tm),Arg′Ty)

ArgTm(Ctxt,Ty,Tm, introCtxt, introTy) = (ArgTy(Ctxt,Ty,Tm, introCtxt),Arg′Tm)

where (writing Γ ∶= introCtxt(x))

Arg′Ty(x) = 1 (ι)
+ (Σσ ∶ Ty(Γ))Ty(introCtxt(inr(⟨Γ, σ⟩))) (Π)
+ (Σ∆ ∶ Ctxt)(Σσ ∶ Ty(∆))Ty(Γ) × (x ≡ inr(⟨∆, σ⟩)) (Wk)

and

Arg′Tm(x, y) =
(ΣΓ ∶ Ctxt)(Σσ ∶ Ty(Γ))(x ≡ inr(⟨Γ, σ⟩) × y ≡ inr(inr(⟨Γ, σ, σ⟩))) (top)
+ (ΣΓ ∶ Ctxt)(Σσ ∶ Ty(Γ))(Στ ∶ Ty(Γ))Tm(Γ, τ) (wk)

× (x ≡ inr(⟨Γ, σ⟩) × y ≡ inr(inr(⟨Γ, σ, τ⟩)))
+ (ΣΓ ∶ Ctxt)(Σσ ∶ Ty(Γ))(Στ ∶ Ty(introCtxt(inr(⟨Γ, σ⟩)))) (lam)

Tm(introCtxt(inr(⟨Γ, σ⟩)), τ) × (introCtxt(x) ≡ Γ × y ≡ inr(inl(⟨Γ, σ, τ⟩))) ∎

The general construction Hopefully the pattern should be clear from the specific
instance just considered, especially from Figure 6.2. Just in case, we give the general

142

6.2. Telescopic inductive definitions and generalised families

construction of an inductive-inductive definition of a telescope of length n + 1. Such a
definition is given by a functor

ArgA ∶ Famn(Set) → Set

and n functors (Ei, Vi and (Vi ○Ei, Ui) will be defined below)

ArgB1
∶ Dialg(ArgA, U0,n−1) → Fam(Set)

ArgBk+2
∶ Eq(Ek ○ Vk+1, (Vk ○Ek, Uk)) → Famk+2(Set)

such that Uk ○ArgBk+1
= ArgBk

○ Vk ○Ek (for the purpose of this condition, let ArgB0
∶=

ArgA). Let us write dom(ArgBk
) for the domain of the functor ArgBk

. We now introduce
the rest if the functors occurring in the specification of ArgBk

:

• The functor V0 is the forgetful functor V0 ∶ Dialg(ArgA, U0,n) → Famn(Set) defined
by V0(X,f) =X , and Vk+1 is the forgetful functor

Vk+1 ∶ Dialg(ArgBk+1
, Uk+1,n−1 ○ V0 ○E0 ○ . . . Vk ○Ek) → dom(ArgBk+1

)

once again defined by Vk+1(X,f) =X .

• Let E0 ∶= Id ∶ Dialg(ArgA, U0,n−1) → Dialg(ArgA, U0,n−1), and let

Ek+1 ∶ Eq(Ek ○ Vk+1, (VK ○Ek, Uk)) ↪ Dialg(ArgBk+1
, Uk+1,n−1 ○ V0,k)

(where we have written V0,k ∶= V0 ○E0 ○ . . . Vk ○Ek) be the embedding given by
the equaliser.

• Finally, the functor

(VK ○Ek, Uk) ∶ Dialg(ArgBk+1
, Uk+1,n−1 ○ V0,k) → Dialg(ArgBk

, Uk,n−1 ○ V0,k−1)

is defined by (VK ○ Ek, Uk)(X,f) = (VK(Ek(X)), Uk(f)). This is well-defined,
since

Uk(f) ∶ Uk(ArgBk+1
(X)) → Uk(Uk+1,n−1(V0,k(X)))

but Uk ○ArgBk+1
= ArgBk

○ Vk ○Ek, hence

Uk(f) ∶ ArgBk
(Vk(Ek(X))) → Uk,n−1(V0,k−1(Vk(Ek(X))))

and (VK(Ek(X)), Uk(f)) is an object in Dialg(ArgBk
, Uk,n−1 ○ V0,k−1).

The reader so inclined can check that none of these definitions are circular – e.g. Ek, Vk
are only defined in terms of Ei and Vi for i < k.

143

6. Extensions

Given such a sequence of functors ArgA, ArgB1
, . . . , ArgBn

, we define the category
EArgA,

⃗ArgBi
to be the equaliser category EArgA,

⃗ArgBi
∶= Eq(En−1 ○ Vn, (Vn−1 ○En−1, Un−1)).

It has as objects n + 1-tuples (A,B1, . . . ,Bn) where

A ∶ Set

B1 ∶ A→ Set

B2 ∶ (x ∶ A) → B1(x) → Set

⋮

together with appropriate “constructors”

introA ∶ ArgA(A,B1, . . . ,Bn) → A

introB1 ∶ (x ∶ ArgA(A,B1, . . . ,Bn)) → ArgB1
(A,B1, . . . ,Bn, introA, x) → B1(introA(x))

⋮

By applying first Lemma 6.20, and then Theorem 4.37 and a variant of Corollary 4.39
repeatedly, we know that EArgA,

⃗ArgBi
is a category with families, and that Theorems 4.41

and 4.42 apply. The initial object in EArgA,
⃗ArgBi

(if it exists, this of course depends on
the functors ArgA, ArgBi

chosen being suitably strictly positive etc) is thus the data type
we want.

Remark 6.22 Dybjer and Setzer [2006] extended the theory of inductive-recursive
definitions to indexed inductive-recursive definitions, where a family U ∶ I → Set of
universes together with decoding functions T ∶ (i ∶ I) → U(i) → D are defined all
at once for some fixed index set I ∶ Set. With this extension, we have in particular
achieved the same thing for inductive-inductive definitions: just let the first set A be an
isomorphic copy of the index set I in question, i.e. be given by a constructor

introA ∶ I → A .

The inverse I → A can be defined via the elimination principle forA, and (after applying
the isomorphism) we now have

B ∶ I → Set

C ∶ (i ∶ I) → B(i) → Set

i.e. an indexed inductive-inductive definition.

6.3 Summary

We have explored two different extensions to the theory of inductive-inductive defini-
tions. The first combines inductive-inductive and inductive-recursive definitions into
one theory. This is closer to what is actually possible in Agda today. By adapting Dybjer

144

6.3. Summary

and Setzer’s set-theoretical model for inductive-recursive definitions, we could show
that also the combined theory is consistent.

Secondly, we extended the theory to cope with the examples we have already
informally introduced. We first generalised the way B can be indexed over A from
B ∶ A→ Set to B ∶ F (A) → Set for any pullback-preserving functor F ∶ Set→ Set (with,
of course, F = Id being a special case). In an orthogonal direction, we then generalised
the number of simultaneously defined sets and families of sets from two to arbitrarily
many. Both these generalisations made essential use of the categorical framework
developed in Chapter 4.

145

Chapter7

Case studies

Contents
7.1 Conway’s surreal numbers . 147
7.2 Positive inductive-recursive definitions 160

In this chapter, we carry out two larger developments making essential use of inductive-
inductive definitions. We hope to demonstrate that inductive-inductive definitions
play a natural rôle in everyday mathematical practise. The first case study investigates
Conway’s surreal numbers in type theory. The second case study develops a theory of
positive inductive-recursive definitions, invented by Lorenzo Malatesta and Neil Ghani.

The work on positive inductive-recursive definitions has been published in the
proceedings of CALCO 2013 [Ghani, Malatesta, and Nordvall Forsberg, 2013a]. Here
we concentrate on the use of inductive-inductive definitions to develop the theory of
positive induction-recursion. See Malatesta’s thesis [2014] for a treatment of the theory
as a whole.

7.1 Conway’s surreal numbers

In this section, we give a larger example of how inductive-inductive definitions can be
naturally used to develop ordinary mathematics in type theory.

7.1.1 Introduction

The surreal numbers [Conway, 2001; Knuth, 1974] classically form a totally ordered
Field1 which contains the real numbers as an ordered subfield and the ordinals as an
ordered substructure. The usual route of constructing the real numbers goes N ↝ Z
↝ Q ↝ R, with four different sets of arithmetical operations and order relations that
must be proven to coincide, and the natural numbers are “reconstructed” three times

1i.e. a field whose domain is a proper class.

147

7. Case studies

as certain integers, rationals and real numbers. Conway, on the other hand, constructs
all of the surreal numbers – which include all of the number classes mentioned above,
and more – with just one definition!

Conway is working in set theory with unrestricted use of the law of excluded
middle and the Axiom of Choice. We will instead explore the surreal numbers from a
constructive and type-theoretic point of view, and we will see that they together with
their order relation naturally form an inductive-inductive definition. We are not the
first to do so: Rosemeier [2001] investigates the surreal numbers from a constructive
point of view, working in Bishop’s tradition in informal set theory, and Mamane [2006]
develops the theory of surreal numbers in the proof assistant Coq (with postulated
classical axioms). Both Rosemeier and Mamane follow Conway and work with an
encoding of surreal numbers along the lines of Section 5.3, whereas we will make use
of inductive-inductive definitions and consider a more faithful representation. The
Homotopy Type Theory book [The Univalent Foundations Program, 2013] gives a higher
inductive-inductive definition of the surreal numbers, taking inspiration from our
example in Nordvall Forsberg and Setzer [2012].

We also take the opportunity to show how inductive-inductive definitions can be
used in real world formal developments in the proof assistant and functional program-
ming language Agda (see Section 2.2). Agda is not based on any formal theory of data
types – in particular, there is no formal proof that Agda implements a consistent theory
– but we will see that Agda actually works quite well for this purpose. In fact, this entire
section is a literate Agda file2. We declare the start of the module:

module surreal where

and we include some standard definitions from the standard library, making sure to
hide definitions whose names will clash:

open import Data.Product hiding (∃) -- sigma types

open import Data.Empty -- empty type

open import Data.Unit hiding (≤) -- unit type

open import Data.Bool hiding (T) -- Booleans

open import Data.Nat hiding (< ; > ; ≤ ; ≥) -- natural numbers

open import Data.Integer hiding (≤ ; -) -- integers

open import Data.Sum -- disjoint sum

7.1.2 Surreal numbers, informally

Before we dive into the type theory, let us take a step back and appreciate Conway’s set-
theoretical definition. As a starting point, let us consider the definition of a Dedekind
cut, used as one possible way to construct R from Q:

2The code in this section type checks with Agda 2.3.2.2 and version 0.7 of the standard library.

148

7.1. Conway’s surreal numbers

Definition 7.1 A Dedekind cut (L,R) consists of two non-empty sets L,R ⊆ Q such that
L ∪R = Q, all elements of L are less than all elements of R and L contains no greatest
element. ∎

We now change the definition so that it makes sense without having constructed
the rational numbers Q first. The resulting defined object will be called a surreal number.

• According to our policy of avoiding Q, L and R should not be sets of rational
numbers. Instead, we make them sets of already constructed surreal numbers.

• If L andR are not subsets of Q, it makes no sense to demand that L∪R = Q, hence
we remove that condition.

• Now that L and R are sets of already constructed numbers, we better have a way
to start the construction, which is hard if we demand that all sets are non-empty,
or L infinite. Hence we remove these two conditions as well.

We end up with the following definition of the surreal numbers, where we have changed
the notation from (L,R) to {L ∣R} (following Conway [2001]) to avoid confusing surreal
numbers and Dedekind cuts:

Definition 7.2 A surreal number {L ∣ R} consists of two sets L,R of surreal numbers
such that all elements of L are less than all elements of R. The class of all surreal
numbers is denoted No. ∎

For a surreal number X , we write X = {XL ∣XR}, and we will write xL for a typical
element ofXL (called a left option ofX) and xR for a typical element ofXR (called a right
option). With this notation, the condition on a surreal number {L ∣ R} can be written

(∀xL ∈ L)(∀xR ∈ R)xL < xR . (7.1)

The intuition is that X = {XL ∣ XR} is the “simplest” number above all the numbers in
XL and below all the numbers in XR:

XL
X

XR

This explains condition (7.1): if X is to lie in between XL and XR, there cannot be an
element xL ∈ XL which is larger or equal to an element xR ∈ XR, or we would have
xR ≤ xL <X < xR, i.e. xR < xR, which should be a contradiction.

The attentive reader might have noticed that something is not right: equation (7.1)
made sense for Dedekind cuts, because in that situation, the elements xL and xR were
rational numbers for which we know what the order relation < is. However, since we
just defined the surreal numbers, we also need to define what it means for one surreal
number to be smaller than another, and this has to be done simultaneously with the
original definition, since it refers to <; this is an inductive-inductive definition!

Conway prefers to define ≤ instead of <. In a classical setting, this is harmless, as
we expect x < y⇔¬(y ≤ x), but we will get to this point in Section 7.1.4. The intuition

149

7. Case studies

once again comes from seeingX as the simplest number betweenXL andXR: ifX ≤ Y ,
then it cannot be the case that X is greater than or equal to any yR ∈ YR, and it also
cannot be the case that any xL ∈XL is greater than or equal to Y :

XL
X

XR

YL
Y

YR

Formally, Conway defines:

Definition 7.3 Let X = {XL ∣ XR} and Y = {YL ∣ YR} be surreal numbers. We have
X ≤ Y if

(∀yR ∈ YR)¬(yR ≤X) and (∀xL ∈XL)¬(Y ≤ xL) . ∎

7.1.2.1 Examples of surreal numbers

We present some examples of surreal numbers in set-theoretical notation. We will write
{. . . , a, b, c, . . . ∣ . . . , d, e, f, . . .} instead of {{. . . , a, b, c, . . .} ∣ {. . . , d, e, f, . . .}}.

Examples 7.4

(i) The simplest surreal number of them all, and the one needed to get off the ground,
is 0No ∶= {∅ ∣ ∅}. It is trivially a surreal number, since it is certainly true that

(∀xL ∈ ∅)(∀xR ∈ ∅)xL < xR .

(ii) Having constructed 0No, we can now construct 1No ∶= {0No ∣ ∅} and −1No ∶=
{∅ ∣ 0No}, both again trivially satisfying (7.1).

(iii) In general, we can define (−)No ∶ Z→ No by

0No ∶= {∅ ∣ ∅}
(n + 1)No ∶= {nNo ∣ ∅} n ≥ 0

(n − 1)No ∶= {∅ ∣ nNo} n ≤ 0

(iv) We do not have to stop at finite numbers: we can define ω ∶= {0No,1No,2No, . . . ∣ ∅}.
In general, ordinals can be identified with surreal numbers of the form {L ∣ ∅}.

(v) Real numbers can be identified with surreal numbers x such that −n < x < n for
some integern (i.e. x is finite), and x ≡ {x−1, x− 1

2 , x−
1
3 , . . . ∣ x+1, x+ 1

2 , x+
1
3 , . . .} (i.e.

x is equivalent to a “rational cut”) where we have writtenX ≡ Y forX ≤ Y ∧Y ≤X
(we will return to this relation in Section 7.1.6). ∎

150

7.1. Conway’s surreal numbers

7.1.3 Set theory in Type Theory

In order to define surreal numbers in Type Theory similar to the way they are defined in
Definitions 7.2 and 7.3, we need to be able to talk about subsets of surreal numbers. We
will follow Azcel’s interpretation of CZF in Type Theory [Aczel, 1978], and represent a
subset X of the set A as an index set IX and a function fX ∶ IX → A, which we think of
as picking out the elements of X . In other words, we model subsets of A as objects of
FamA. Since we want to keep things small, we cannot use arbitrary sets as index sets.
Instead, we localise the definition to a universe

data U : Set
T : U → Set

in the style of Hancock [Ghani and Hancock, 2012]. The exact details of the universe U
can be left open, but it should at least contain 0, 1, 2 and the natural numbers, and be
closed under disjoint unions – we also close it under dependent pairs and functions:

data U where
N’ �’ ⊺’ Bool’ : U
Π’ Σ’ : (a : U) → (b : T a → U) → U
⊎’ : U → U → U

T N’ = N
T �’ = �
T ⊺’ = ⊺
T Bool’ = Bool
T (Π’ a b) = (x : T a) → T (b x)
T (Σ’ a b) = Σ (T a) (ń x → T (b x))
T (a ⊎’ b) = T a ⊎ T b

A subset X of A is represented by an (U,T)-localised family of As, i.e. a U-small
index set X ind ∶ U and an element function X el ∶ X ind→ A:

record P (A : Set) : Set where
constructor subset
field

ind : U
el : T ind→ A

infix 6 el
open P

For example, we can define the empty subset of any set by

151

7. Case studies

∅ : {A : Set} → P A
∅ = subset �’ �-elim

and singletons and disjoint unions of subsets by

j o : {A : Set}→ A → P A
j x o = subset ⊺’ (ń → x)

⊍ : {A : Set} → P A → P A → P A
(subset I Xi) ⊍ (subset J Yi) = subset (I ⊎’ J) [Xi , Yi]

Remark 7.5 Unfortunately, Agda has already reserved the symbols { and } for implicit
arguments. We will squint and use the similar looking j and o instead, both for the
singleton subset above, and for the surreal number {L ∣ R} later.

We also define quantifiers for elements of a subset X of A. We say that ∀[x ∈X]ϕ
holds for a property ϕ ∶ A→Set if ϕ(X el i) holds for all i ∶ T(X ind), and similarly for
∃[x ∈X]ϕ.

∀’ : {A : Set} → (X : P A) → (ϕ : A → Set) → Set
∀’ {A} X ϕ = (x : T (X ind)) → ϕ (X el x)

record ∃ {A : Set} (X : P A) (ϕ : A → Set) : Set where
constructor exists
field

witness : T (X ind)
proof : F (X el witness)

By using Agda’s syntax facility (which should be read from right to left), we can get a
nice notation for the quantifiers:

syntax ∀’ X (ń x → F) = ∀[x ∈ X] F
syntax ∃ X (ń x→ F) = ∃[x ∈ X] F

7.1.4 Surreal numbers as an inductive-inductive definition

We now translate Conway’s definition of the surreal numbers into Type Theory. We
already observed that this will need to be an inductive-inductive definition and not a
simple inductive definition, since the set of surreal numbers No and the order relation
≤∶ No→ No→ Set are mutually defined.

However, there is a second complication: we would like to define also ≤ inductively,
but looking at Definition 7.3 again, we see that ≤ appears negatively (literally!) in its

152

7.1. Conway’s surreal numbers

defining formula

(∀yR ∈ YR)¬(yR ≤X) and (∀xL ∈XL)¬(Y ≤ xL) .

Following Rosemeier [2001] (and also Mamane [2006]), we instead simultaneously
define ≥ and its negation, which we write <. This makes sense from a constructive point
of view anyway, as we would like to define < using positive information (compare with
the notion of apartness relation in constructive real analysis [Bishop and Bridges, 1985]).
Thus, we simultaneously define

data No : Set
data ≥ : No → No → Set
data < : No → No → Set

using inductive-inductive definitions in the following way:

data No where
j ∣ o : (XL : P No) → (XR : P No) →

∀[xl ∈ XL] (∀[xr ∈ XR] (xl < xr))
→ No

data ≥ where
geq : {XL : P No}→ {XR : P No} →

{p : ∀[xl ∈ XL] (∀[xr ∈ XR] (xl < xr))}→
{YL : P No}→ {YR : P No} →
{q : ∀[yl ∈ YL] (∀[yr ∈ YR] (yl < yr))} →
(let X = j XL ∣ XR o p

Y = j YL ∣ YR o q
in

(∀[xr ∈ XR] Y < xr) →
(∀[yl ∈ YL] yl < X) →

X ≥ Y)

data < where
ltr : {XL : P No}→ {XR : P No} →

{p : ∀[xl ∈ XL] (∀[xr ∈ XR] (xl < xr))}→
{Y : No} →
(let X = j XL ∣ XR o p

in
∃[xr ∈ XR] Y ≥ xr →

X < Y)
ltl : {X : No}

{YL : P No}→ {YR : P No} →
{q : ∀[yl ∈ YL] (∀[yr ∈ YR] (yl < yr))} →

153

7. Case studies

(let Y = j YL ∣ YR o q
in
∃[yl ∈ YL] yl ≥ X →

X < Y)

Notice that X<Y is just the positive version of ¬(Y≥X). Indeed, if we have positive
information that X<Y, then we know that it cannot be the case that X≥Y – the negative
statement of X<Y.

Lemma 7.6 If X<Y, then ¬(X≥Y).

Proof. We prove the statement by induction on X<Y and X≥Y. Assume X≥Y, i.e. Y<xR
for all xR ∈ XR and yL<X for all yL ∈ YL. Also assume X<Y, which can happen for two
possible reasons:

If X<Y because Y≥xR for some xR ∈ XR, then both Y<xR and Y≥xR for that xR ∈ XR,
which is a contradiction by the induction hypothesis. Similarly, if X<Y because yL≥X for
some yL ∈ YL, then this and yL<X once again leads to a contradiction by the induction
hypothesis.

The Agda proof of the lemma is short and sweet:

<-to-≥→� : {X Y : No}→ X < Y → X ≥ Y → �
<-to-≥→� (ltr (exists xri y≥xr)) (geq y<xr yl<x) = <-to-≥→� (y<xr xri) y≥xr
<-to-≥→� (ltl (exists yli yl≥x)) (geq y<xr yl<x) = <-to-≥→� (yl<x yli) yl≥x

In the following, we will often only give Agda proofs, as they are quite readable on
their own. We do not expect the converse of the lemma to hold without classical logic,
of course. For convenience, we define

≤ : No → No → Set
x ≤ y = y ≥ x

> : No → No → Set
x > y = y < x

infix 4 < >
infix 5 ≥ ≤

as well as projection functions

L : No → P No
(j XL ∣ o) L = XL

R : No → P No

154

7.1. Conway’s surreal numbers

(j ∣ XR o) R = XR

7.1.4.1 Examples of surreal numbers in Type Theory

Let us take a look at the type theoretical versions of the examples of surreal numbers
from Section 7.1.2.1.

Examples 7.7

(i) The surreal number 0No = {∅ ∣ ∅} becomes

zeroS : No
zeroS = j ∅ ∣ ∅ o (ń x e → �-elim e)

in the type-theoretical setting, where the empty subset ∅ ∶= subset �’ �-elim was
defined in Section 7.1.3. Notice how the trivial proof that

(∀xL ∈ ∅)(∀xR ∈ ∅)xL < xR

is just an application of ex falso quod libet.

(ii) In the same straightforward way, we can define

oneS : No
oneS = j j zeroS o ∣ ∅ o (ń x e → �-elim e)

-oneS : No
-oneS = j ∅ ∣ j zeroS o o (ń e x → �-elim e)

(iii) We can also represent the integers as type-theoretic surreal numbers. This is most
conveniently presented as an embedding of Z into No, defined by recursion over
the integer:

ÌZ : Z → No
ÌZ -[1+ zero] = -oneS
ÌZ -[1+ N.suc n] = j ∅ ∣ j ÌZ -[1+ n] o o (ń e x → �-elim e)
ÌZ (+ zero) = zeroS
ÌZ (+ N.suc n) = j j ÌZ (+ n) o ∣ ∅ o (ń x e → �-elim e)

(iv) As a special case of the embedding ÌZ of the integers, we get an embedding of the
natural numbers

155

7. Case studies

ÌN : N → No
ÌN n = ÌZ (+ n)

which we can use to define the first infinite ordinal

ř : No
ř = j subset N’ ÌN ∣ ∅ o (ń x e → �-elim e)

In general, remember that Conway defined the ordinals to be surreal numbers of
the form {L ∣ ∅}. We can define the corresponding predicate

is-ordinal : No → Set
is-ordinal X = ∀[x ∈ X R] �

and indeed, the identity function is a proof that ř is an ordinal. This is is most
likely not a constructively useful notion of an ordinal.

(v) The corresponding predicate for being a real number can also be defined, but
requires some more infrastructure dealing with rational numbers and addition of
surreal numbers. We omit it here. ∎

7.1.5 Properties and operations

Let us now demonstrate that our definition of the surreal numbers is useful by proving
some (expected) properties about them and defining arithmetical operations on them;
both activities will have a distinct inductive-inductive flavour. To do so, we will of
course use the elimination rules, but this time in the form of Agda’s built in support for
dependent pattern matching [Coquand, 1992].

In short, Agda allows us to define a function f from an inductively defined data
type by giving its value on the constructors of the data type. Furthermore, f may be
used for recursive calls on structurally smaller arguments. If f is a function of multiple
arguments, it is not necessary for all arguments to decrease [Abel and Altenkirch, 2002],
which will often be useful for our purposes. Conway [2001, p. 5] writes

In general when we wish to establish a proposition P (x) for all numbers
x, we will prove it inductively by deducing P (x) from the truth of all the
propositions P (xL) and P (xR). [. . .] When proving propositions P (x, y)
involving two variables, we may use double induction, deducing P (x, y)
from the truth of all propositions of the form P (xL, y), P (xR, y), P (x, yL),
P (x, yR) (and, if necessary, P (xL, yL), P (xL, yR), P (xL, yR), P (xR, yL)).
Such multiple inductions can be justified in the usual way in terms of re-
peated single inductions.

156

7.1. Conway’s surreal numbers

The point is that these kind of inductive arguments, including double induction, is
exactly what Agda’s pattern matching gives us. Goguen et al. [2006] show how depen-
dent pattern matching can be translated into standard eliminators (plus ‘uniqueness of
identity proofs’) for inductive families; in particular, this includes the justification in
terms of repeated single inductions that Conway alludes to.

As a warm-up, and sanity check that our definition is not completely wrong, let us
prove Conway’s [2001] Theorem 0, which says that the order of the surreal numbers
behave as we intuitively described it in Section 7.1.2:

Lemma 7.8 (Conway’s Theorem 0) For all surreal numbers X = {XL ∣ XR} we have

(i) X ≥X ,

(ii) X < xR for all xR ∈XR,

(iii) xL <X for all xL ∈XL, and

(iv) not X <X .

Proof. We simply prove the lemma by giving Agda definitions of the right type:

refl-≥ : {X : No} → X ≥ X
refl-≥ {j XL ∣ XR o p} = geq (ń xri → ltr (exists xri refl-≥))

(ń xli → ltl (exists xli refl-≥))

Thm0ii : {X : No} → ∀[xr ∈ X R] (X < xr)
Thm0ii {j XL ∣ XR o p} xri = ltr (exists xri refl-≥)

Thm0iii : {X : No} → ∀[xl ∈ X L] (xl < X)
Thm0iii {j XL ∣ XR o p} xli = ltl (exists xli refl-≥)

irrefl-< : {X : No}→ (X < X) → �
irrefl-< (ltr (exists xri x>xr)) = <-to-≥→� (Thm0ii xri) x>xr
irrefl-< (ltl (exists yli yl>y)) = <-to-≥→� (Thm0iii yli) yl>y

In the proof irrefl-< of (iv), we used <-to-≥→�, the proof of Lemma 7.6.

Let us now see that we can also define operations on the surreal numbers, such as
e.g. negation. Conway usually defines the operation first, and then later verifies that e.g.
ifX is a surreal number – i.e. satisfies the order condition (7.1) – then so is −X . Since we
have baked in the order condition in our inductive-inductive definition of the surreal
numbers, we cannot allow ourselves to do the same. Instead, we must prove that the
order condition is satisfied simultaneously as we the define the operation. Thankfully,
this is exactly what the (general) elimination rule for inductive-inductive definitions
allow us to do.

157

7. Case studies

Proposition 7.9 Conway’s construction of the negation of a surreal number

−{XL ∣ XR} ∶= {−XL ∣ −XR}

where −Xi = {−xi ∶xi ∈Xi} can be carried out in Type Theory, and we have

X ≤ Y implies − Y ≤ −X
X < Y implies − Y < −X

Proof. We define

- : No → No
lemma–≤ : {X Y : No} → X ≤ Y → - Y ≤ - X
lemma–< : {X Y : No} → X < Y → - Y < - X

simultaneously – note how - appears already in the type of lemma–≤ and lemma–<. The
defining equations are

- (j XL ∣ XR o p) = let
-XL = subset (XL ind) (ń xli → - (XL el xli))
-XR = subset (XR ind) (ń xri → - (XR el xri))
in
j -XR ∣ -XL o (ń xri xli → lemma–< (p xli xri))

lemma–≤ (geq y¬>xr yl¬>x) = geq (ń yli → lemma–< (yl¬>x yli))
(ń xri → lemma–< (y¬>xr xri))

lemma–< (ltr (exists xri xr<y)) = ltl (exists xri (lemma–≤ xr<y))
lemma–< (ltl (exists yli x<yl)) = ltr (exists yli (lemma–≤ x<yl))

We see that indeed -(ÌZx) = ÌZ(−Zx), at least morally – the formal statement requires
function extensionality because of our higher-order representation of subsets.

We have already seen that ≤ is reflexive in Lemma 7.8. Let us now prove that it is
also transitive. Also Conway proved this, of course, but using classical logic. Since we
are working constructively, we have to do a little more work.

Lemma 7.10 (Conway’s Theorem 1) ≤ is transitive, i.e. if X≤Y and Y ≤Z then X≤Z.

Proof. In order to be able to handle recursive calls, we define

trans-≤ : {X Y Z : No} → X ≤ Y → Y ≤ Z → X ≤ Z
trans-≤-< : {X Y Z : No} → X ≤ Y → Y < Z → X < Z
trans-<-≤ : {X Y Z : No} → X < Y → Y ≤ Z → X < Z

158

7.1. Conway’s surreal numbers

simultaneously by

trans-≤ (geq X<yr xl<Y) (geq Y<zr yl<Z)
= geq (ń zri → trans-≤-< (geq X<yr xl<Y) (Y<zr zri))
(ń xli → trans-<-≤ (xl<Y xli) (geq Y<zr yl<Z))

trans-≤-< (geq X<yr xl<Y) (ltr (exists yri Z≥yr)) = trans-<-≤ (X<yr yri) Z≥yr
trans-≤-< p (ltl (exists zli zl≥Y)) = ltl (exists zli (trans-≤ p zl≥Y))

trans-<-≤ (ltr (exists xri Y≥xr)) q = ltr (exists xri (trans-≤ Y≥xr q))
trans-<-≤ (ltl (exists yli yl≥X)) (geq Y<zr yl<Z) = trans-≤-< yl≥X (yl<Z yli)

We could go on and define addition, multiplication and division, but hopefully, we
have already been given a taste of what working with inductive-inductive definitions in
Agda is like. We are also fast approaching the limits of what Agda and its termination
checker can handle. It is nevertheless quite pleasing that so much is possible to do in
Agda even today, without the developers giving any special care to inductive-inductive
definitions.

7.1.6 Discussion

Numbers and games Conway [2001] first defines the surreal numbers as we have
indicated above. It is then anticipated that numbers being defined simultaneously with
their ordering relation might make certain people uncomfortable, and the “formal”
development of surreal numbers is divided into three stages:

(i) Games are defined as numbers without an order condition, i.e. a game is given by
two sets of games. (Games are called games, as they are used in the second half
of the book to analyse strategies for mathematical games such as Nim).

(ii) The order relation is then defined on games, using the same formula as before.

(iii) Finally surreal numbers are defined to be those games that satisfy the order
condition.

Mamane [2006] follows the same route, since inductive-inductive definitions are not
available in Coq. There are interesting parallels with the translation of inductive-
inductive definitions into indexed inductive definitions in Section 5.3, but here the
“prenumbers” (i.e. games) are of a particularly simple form where there is no mutual
dependency at all. It should be clear that there is no need to jump through such hoops
to justify the theory – inductive-inductive definitions are justified in their own right.

159

7. Case studies

Proving properties of surreal numbers The attentive reader has noticed that we have
not proven many properties about surreal numbers not involving the order relation on
them. This stems from the fact that we have represented subsets as functions. To prove
equalities between surreal numbers, we need to prove equalities between functions,
and for that we usually need function extensionality. Even a simple statement such as
−(−X) =X , which has the following informal one-liner proof

−(−{xL ∣ xR}) = −{−xR ∣ − xL} = {−(−xL) ∣ − (−xR)} = {xL ∣ xR}

fails because we need function extensionality to apply the induction hypothesis in the
last step. Thus, Agda (or our representation of subsets) is not quite adequate for a
complete treatment of the surreal numbers.

Equality of surreal numbers We proved that ≤ is reflexive and transitive, so a natural
question is if the relation is also anti-symmetric (i.e. X≤Y and Y ≤X implies X = Y), as
that would make ≤ into a partial order. The answer is both no and yes. No, because it
is not true, and yes, because Conway declares that two surreal numbers X and Y are
actually equal if X≤Y and Y ≤X , thus forcing ≤ to be a partial order (in fact, the order
is total if and only if the law of excluded middle holds [Rosemeier, 2001, Prop. 1.9]).
This is also needed to validate certain arithmetical laws; for instance, the equation
X + (−X) = 0 does not hold up to propositional equality, but only up to the equivalence
relation mentioned above.

The traditional type theoretical solution is thus to form a setoid of surreal numbers,
with equivalence relation X ∼ Y iff X≤Y and Y ≤X . By switching to a setoid of surreal
numbers, we also get function extensionality, but it remains to be seen how much extra
book keeping is needed.

The Homotopy Type Theory book [The Univalent Foundations Program, 2013]
instead advocates the use of a higher inductive-inductive definition, where the set
of surreal numbers and the order relation is constructed simultaneously with new
(non-canonical) constructors for the identity type, which forces the relation ∼ above to
be logically equivalent to equality. At the time of writing, there is no computational
interpretation of such higher inductive definitions.

7.2 Positive inductive-recursive definitions
As yet another example of how inductive-inductive definitions are useful, we return to
Dybjer and Setzer’s theory IR of inductive-recursive definitions. In Section 3.2.2, the
syntax of inductive-recursive definitions was presented as an inductive definition. The
definitions were then given semantics as initial algebras of endofunctors on Fam ∣C∣,
i.e. endofunctors on the category of families of objects from some discrete category ∣C∣.
We will see that if we upgrade the inductive definition of the syntax to an inductive-
inductive one, then the discreteness condition can be lifted, i.e. we get a theory of data
types, which we call positive inductive-recursive definitions, whose semantics are given
as initial algebras of endofunctors on FamC for an arbitrary category C. We recover

160

7.2. Positive inductive-recursive definitions

ordinary inductive-recursive definitions as the special case when C is discrete. We also
extend Dybjer and Setzer’s model construction to our setting.

7.2.1 The semantics of IR, revisited

In Section 3.2.2, we recalled Dybjer and Setzer’s system of codes for inductive-recursive
definitions. We then gave a semantics by defining two functions

ArgIR(γ) ∶ (U ∶ Set) → (T ∶ U →D) → Set

FunIR(γ) ∶ (U ∶ Set) → (T ∶ U →D) → ArgIR(γ,U,T) →D

for each code γ ∶ IR(D). We also remarked that, using extensional type theory, ArgIR(γ)
and FunIR(γ) can be combined and extended to a functor FamD → FamD. Since we are
going to generalise it in a moment, we now present this functor in full. In doing so, we
make use of the following folklore lemma:

Lemma 7.11 FamC is the free completion of C under set-indexed coproducts, i.e. FamC
has set-indexed coproducts, given by

∑
a∶A

(Xa, Pa) = (∑
a ∶A

Xa, [Pa]a ∶A) ,

and there is a functor η ∶ C → FamC, such that every functor F ∶ C → D where D
is a category with set-indexed coproducts has a unique (up to natural isomorphism)
coproduct-preserving extension F ∶ FamC→ D.

Proof. The embedding η ∶ C → FamC is given by η(Y) = (1, λ . Y), and the extension
F of F ∶ C→ D by F (X,P) = ∑x∶X F (P (x)). We have F ○ η = F (up to natural isomor-
phism) since a unary coproduct of A is nothing but the object A itself. Furthermore, F
preserves coproducts since

∑
⟨a,x⟩∶∑a∶AXA

F ([Pa](⟨a, x⟩)) = ∑
⟨a,x⟩∶∑a∶AXA

F (Pa(x)) ≅ ∑
a∶A

∑
x∶XA

F (Pa(x)) = ∑
a∶A

F (Xa, Pa)

and the same isomorphism also shows uniqueness.

Remark 7.12 The category FamC has rich structure in other ways as well, for any
category C:

(i) FamC is fibred over Set via the split fibration π(X,P) =X . For later use, we note
that a morphism (h, k) ∶ (X,P) → (Y,Q) is a split Cartesian morphism if k is a
family of identity morphisms, i.e. if Q = P ○ h.

(ii) FamC is cocomplete if and only if C has all small connected colimits [Carboni
and Johnstone, 1995, dual of Prop. 2.1].

(iii) Fam is a functor Cat→ Cat; given F ∶ C→ D, we get a functor Fam (F) ∶ FamC→
Fam D by composition: Fam (F)(X,P) = (X,F ○ P).

161

7. Case studies

When C is a discrete category every morphism between families (X,P) and (Y,Q)
consists only of functions h ∶ X → Y such that P (x) = Q(h(x)) for all x in X . From a
fibrational perspective, this amounts to the restriction to the split Cartesian fragment
Fam ∣C∣ of the fibration π ∶ FamC → Set, for C an arbitrary category. By restricting to
this fragment, we can extend ArgIR(γ) and FunIR(γ) to an action also on morphisms.
From now on, let us write JγK(U,T) for (ArgIR(γ,U,T),FunIR(γ,U,T)). The action of
JγK on objects was defined in Section 3.2.2. Making use of coproducts in Fam ∣C∣, this
action can be written

Jι cK(X,P) = (1, λ . c)
JσA fK(X,P) = ∑

a ∶A
Jf aK(X,P)

JδA F K(X,P) = ∑
g ∶A→X

JF (P ○ g)K(X,P)

We now give the action on morphisms. Let (h, id) ∶ (X,P) → (Y,Q) be a morphism in
FamD, i.e. h ∶X → Y and Q ○ h = P . We can then define

Jι cK(h, id) = (id1, id)
JσA fK(h, id) = [ina ○ Jf aK(h, id)]a ∶A
JδA F K(h, id) = [inh○g ○ JF (Q ○ h ○ g)K(h, id)]g ∶A→X

Here, the last line type checks since Q ○ h = P , hence Q ○ h ○ g = P ○ g and we can apply
the induction hypothesis.

Hancock et al. [2013] introduce morphisms between IR codes. This makes IR(D)
into a category, and the decoding J−K ∶ IR(D) → [FamD,FamD] can be shown to be a
full and faithful functor. We will draw inspiration from this in Section 7.2.2 when we
generalise the semantics to endofunctors on FamC for possibly non-discrete categories
C. But first, let us look at some examples.

Example 7.13 (A universe closed under dependent sums) In Example 3.5, we saw an
example of an inductive-recursive definition of a universe closed under W-types. As a
variation of this example, let us consider a more modest universe containing the natural
numbers and closed under Σ-types. This can also be defined using inductive-recursive
definitions. Indeed, one can easily write down a code γN,Σ ∶ IR(Set) for a functor that
will have such a universe as its initial algebra:

γN,Σ ∶= ιN +IR δ1(λX. δX(⋆)(λY. ιΣ(X(⋆))Y)) ∶ IR(Set)

Here we have used γ +IR γ
′ ∶= σ2 (λx. if x then γ else γ′) to encode a binary coproduct

as a 2-indexed coproduct. The set X(⋆) is simply X ∶ 1→ Set applied to the canonical
element ⋆ ∶ 1. If we decode γN,Σ, we get a functor which satisfies

JγN,ΣK(U,T) ≅ (1, λ .N) + (Σu ∶U .T (u) → U,λ⟨u, f⟩.Σx ∶T (u) . T (f(x)))
= (1 +Σu ∶U .T (u) → U, inl ↦ N; inr(u, f) ↦ Σx ∶T (u) . T (f(x)))

162

7.2. Positive inductive-recursive definitions

so that the initial algebra (U,T) of JγN,ΣK, which satisfies (U,T) ≅ JγN,ΣK(U,T) by
Lambek’s Lemma, satisfies the the following equations:

U = 1 + (Σu ∶ U)(T (u) → U)
T (inl ∗) = N

T (inr (u, f)) = (Σx ∶ T (u))T (f(x)) ∎

Example 7.14 (A universe closed under dependent function spaces) In the same way,
we can easily write a down a code for a universe closed under Π-types:

γN,Π ∶= ιN +IR δ1(λX. δX(⋆)(λY. ιΠ(X(⋆))Y)) ∶ IR(Set)

Even though this looks extremely similar to the code in the previous example, we will
see in the next section that there is a big semantic difference between them. ∎

7.2.2 Syntax and semantics of positive inductive-recursive definitions

We know from the last section that IR codes can be interpreted as functors on families
built over a discrete category. What happens if we try to interpret IR codes on the
category FamC, and not just on the subcategory Fam ∣C∣? The problem is that if we allow
for more general morphisms, we can not prove functoriality of the semantics of a δ code
as it stands anymore: it is essential to have an actual equality on the second component
of a morphism in FamC in order to have a sound semantics (see Example 7.18 below).
We now introduce a new axiomatisation of positive inductive-recursive definitions IR+

which enables us to solve this problem: By generalising inductive-recursive definitions,
we can interpret codes as functors on FamC for an arbitrary, possibly non-discrete
category C.

The basic idea is to deploy proper functors in the δ codes. This enables us to remove
the restriction on morphisms within inductive-recursive definitions; indeed, if we know
that F ∶ (A → C) → IR+(C) is a functor, and not just a function, we do not have to rely
on the equality P ○ g = Q ○ h ○ g between objects in CA, but we can use the second
component of a morphism (h, k) in FamC to get a map P ○g → Q○h○g; then we can use
the fact that F is a functor to get a morphism between codes F (P ○ g) → F (Q ○ h ○ g).

However, what does it mean for F ∶ (A → C) → IR+(C) to be a functor? To start
with, we need both A → C and IR+(C) to be categories. It is clear that A → C is just a
functor category (with A a discrete category), but what about IR+? Following Hancock
et al. [2013], we can define the morphisms between IR+ codes inductively. For ordinary
inductive-recursive definitions, the morphisms can be defined after the definition of
the codes themselves, but this time, the definitions needs to be done simultaneously,
as we want the δ code to refer to morphisms. In other words, we are dealing with an
inductive-inductive definition!

The codes will be interpreted as functors JγK ∶ FamC→ FamC, and the morphisms
as natural transformations between them. This should also give an intuition for the
definition of the morphisms: a morphism between codes γ and γ′ contains the data
necessary to construct a natural transformation from JγK to Jγ′K. The actual choice of

163

7. Case studies

morphisms is not so important, as long as they contain identities, are closed under
composition and can be decoded as natural transformations. We have made one such
choice, but many others are possible.

Definition 7.15 Given a category C we simultaneously define the type IR+(C) of pos-
itive inductive-recursive codes on and the type of morphisms between these codes
HomIR+(C)(,) ∶ IR+(C) → IR+(C) → type as follows:

• IR+(C) codes:
c ∶ C

ι c ∶ IR+(C)

A ∶ Set f ∶ A→ IR+(C)
σAf ∶ IR+(C)

A ∶ Set F ∶ (A→ C) → IR+(C) (F functor)
δAF ∶ IR+(C)

• IR+(C) morphisms:

– identity morphisms:
idγ ∶ HomIR+(C)(γ, γ)

– morphisms from ιc:

f ∶ HomC(c, c′)
Γι,ι(f) ∶ HomIR+(C)(ι c, ι c′)

a ∶ A ρ ∶ HomIR+(C)(ι c, f(a))
Γι,σ(a, ρ) ∶ HomIR+(C)(ι c, σAf)

g ∶ A→ 0 ρ ∶ HomIR+(C)(ι c, F (! ○ g))
Γι,δ(g, ρ) ∶ HomIR+(C)(ι c, δAF)

– morphisms from σAf :

γ, ∶ IR+(C) ρ ∶ (a ∶ A) → HomIR+(C)(f(a), γ)
Γσ,γ(ρ) ∶ HomIR+(C)(σAf, γ)

– morphisms from δAF

γ, ∶ IR+(C) ρ ∶ Nat(F,κγ)
Γδ,γ(ρ) ∶ HomIR+(C)(δAF, γ)

164

7.2. Positive inductive-recursive definitions

b ∶ B ρ ∶ Nat(F,κf b)
Γδ,σ(b, ρ) ∶ HomIR+(C)(δAF,σAf)

g ∶ B → A ρ ∶ Nat(F,G(− ○ g))
Γδ,δ(g, ρ) ∶ HomIR+(C)(δAF, δBG)

In the clauses Γδ,γ and Γδ,σ, we have written κγ ∶ CA → IR+(C) for the constant functor
with value γ. ∎

This is a (large) inductive-inductive definition of

IR+(C) ∶ type

HomIR+(C)(,) ∶ IR+(C) → IR+(C) → type

Since HomIR+(C)(,) is indexed over two copies of IR+(C), it is an instance of the ex-
tended theory from Section 6.2. The simultaneousness is hidden in the demand that F
should be a functor in the δ code. Indeed, this can be spelt out as two operations

F ∶ (A→ C) → IR+(C)
F→ ∶ (f, g ∶ A→ C) → HomA→C(f, g) → HomIR+(C)(F (f), F (g))

plus the functor laws, which we can leave out of the initial definition. Note how the
type of F→ indeed is strictly positive in HomIR+(C).

We now explain how each code γ ∶ IR+(C) is interpreted as an endofunctor

JγK ∶ FamC→ FamC

Let us call a functor which is isomorphic to a functor induced by an IR+ code an IR+

functor. The semantics of IR+ closely follows the one given in Section 7.2.1; as before
we make essential use of coproducts in FamC. However, since codes and morphisms
were defined simultaneously, they also need to be decoded simultaneously as functors
and natural transformations respectively. This is exactly what the inductive-inductive
elimination principle allows us to do!

Theorem 7.16 (IR+ functors) Let C be an arbitrary category.

(i) Every code γ ∶ IR+(C) induces a functor JγK ∶ FamC→ FamC.

(ii) Every morphism ρ ∶ HomIR+(C)(γ, γ′) for codes γ, γ′ ∶ IR+(C) gives rise to a natural
transformation JρK ∶ JγK ⋅Ð→ Jγ′K.

Proof. While the action on objects is the same for both IR+ and IR functors, the action
on morphisms is different when interpreting a code of type δAF : in the semantics of
IR+ we exploit the fact that F ∶ (A→ C) → IR+(C) is now a functor by using its action

165

7. Case studies

on morphism (which we, for the sake of clarity, indicate with F→). We give the action
of IR+ functors on morphisms only.

The action on morphisms is given as follows. Let (h, k) ∶ (X,P) → (Y,Q) be a
morphism in FamC. We define JγK(h, k) ∶ JγK(X,P) → JγK(Y,Q) by recursion on γ:

Jι cK(h, k) = (id1, idc)
JσAfK(h, k) = [ina ○ Jf aK(h, k)]a ∶A
JδAF K(h, k) = [inh○g ○ JF (Q ○ h ○ g)K(h, k) ○ JF→(g∗(k))K(X,P)]g ∶A→X

In the last clause, g∗(k) ∶ P ○g ⋅Ð→ Q○h○g is the natural transformation with component
g∗(k)a = kg a ∶ P (g a) → Q(k(g a)).

We now explain how a IR+ morphism ρ ∶ γ → γ′ is interpreted as a natural transfor-
mation JρK ∶ JγK ⋅Ð→ Jγ′K between IR+ functors by specifying the component JρK(X,P) at
(X,P) ∶ FamC. Naturality of these transformations can be proved by a routine diagram
chase.

JidγK(X,P) = idJγK(X,P)

JΓι,ι(f)K(X,P) = (id1, f)
JΓι,σ(a, ρ)K(X,P) = ina ○ JρK(X,P)

JΓι,δ(g, ρ)K(X,P) = in!X○g ○ JρK(X,P)

JΓσ,γ(ρ)K(X,P) = [Jρ(a)K(X,P)]a ∶A
JΓδ,γ(ρ)K(X,P) = [Jρ(P○h)K(X,P)]h ∶A→X

JΓδ,σ(b, ρ)K(X,P) = inb ○ [Jρ(P○g)K(X,P)]g∶A→X
JΓδ,δ(f, ρ)K(X,P) = [ing○f ○ Jρ(P○g)K(X,P)]g∶A→X

Formally, we are applying the elimination principle to the motive

P (γ) = FamC→ FamC
Q(γ, γ′, ρ, γ̃, γ̃′) = (X ∶ FamC) → γ̃(X) → γ̃′(X)

Note how it is once again crucial thatQ can depend on γ̃ and γ̃′, since we need to define
functors mutually with natural transformations between them.

Example 7.17 (A universe closed under dependent sums in Fam Setop) In Example 7.13,
we defined an ordinary IR code γN,Σ ∶ IR(Set) for a universe closed under Σ-types. We
can extend this code to an IR+ code

γN,Σ = ιN +IR δ1(X ↦ δX∗(Y ↦ ιΣ(X∗)Y)) ∶ IR+(Setop)

where now G ∶= Y ↦ ιΣ(X∗)Y and F ∶= X ↦ δX∗G needs to be functors. Given
f ∶ Y → Y ′ in X → Setop, i.e. fx ∶ Y (x) → Y ′(x) in Setop, we have Σx ∶ (X∗).fx ∶
Σ(X∗)Y → ιΣ(X∗)Y ′ in Setop so that we can define

G(f) ∶ ιΣ(X∗)Y → ιΣ(X∗)Y ′

166

7.2. Positive inductive-recursive definitions

by G(f) = Γι,ι(Σx ∶ (X∗).fx).
We also need F to be a functor. Given f ∶ X → X ′ in 1 → Setop, we need to define

F (f) ∶ δX(⋆)G → δX′(⋆)G. According to Definition 7.15, such a morphism consists of
a map g ∶ X ′(⋆) → X(⋆) and a natural transformation ρ from G to G(− ○ g). We can
choose g = f⋆ ∶X ′(⋆) →X(⋆) and ρ = [inf⋆x]x∶X′(⋆). Notice that working in Setop made
sure that f∗ was going in the right direction. ∎

Example 7.18 (A universe closed under dependent function spaces in Fam Set≅) In
Example 7.14, we saw how we could use induction-recursion to define a universe closed
under Π-types in Fam ∣Set∣, using the following code:

γN,Π = ιN +IR δ1(X ↦ δX∗(Y ↦ ιΠ(X∗)Y)) ∶ IR(Set)

If we try to extend this to an IR+ code in Fam Set or Fam Setop, we run into problems.
Basically, given a morphism f ∶X ′ →X , we need to construct a morphism ΠX ′ (Y ○f) →
ΠX Y , which of course is impossible if e.g. X ′ = 0, X = 1, and Y ∗ = 0.

Hence the inherent contravariance in the Π-type means that γN,Π does not extend
to a IR+(Set) or IR+(Setop) code. However, if we move to the groupoid Set≅, which is
the subcategory of Set with only isomorphisms as morphisms, we do get an IR+(Set≅)
code describing the universe in question, which is still living in a category beyond the
strict category Fam ∣Set∣. ∎

7.2.3 Comparison to plain IR

We now investigate the relationship between IR+ and IR. Note that every type D can be
regarded as a discrete category, which we by abuse of notation denote ∣D∣. In the other
direction, every category C gives rise to a type ∣C∣ whose elements are the objects of C.

Proposition 7.19 There is a function ϕ ∶ IR(D) → IR+(∣D∣) s.t.

JγKIR(D) ≅ Jϕ(γ)KIR+(∣D∣)

Proof. The only interesting case is the δ code. Since ∣D∣ is a discrete category, also
A → ∣D∣ is discrete. Hence a mapping on objects (A → ∣D∣) → IR(D) can trivially be
extended to a functor (A→ ∣D∣) → IR+(∣D∣).

This proposition shows that the theory of IR can be embedded in the theory of IR+.
In the next proposition we slightly sharpen this result. We use the functoriality of the
Fam construction (Remark 7.12) to show that forgetting about the extra structure in IR+

simply gets us back to plain IR.

Proposition 7.20 Let ιC ∶ ∣C∣ → C be the canonical embedding of the discretisation of a
category C into itself. There is a function ψ ∶ IR+C→ IR ∣C∣ such that for all γ ∶ IR+C

Fam ι ○ Jψ(γ)KIR ∣C∣ ≅ JγKIR+C ○ Fam ι

Furthermore, ψ ○ ϕ = id.

167

7. Case studies

7.2.4 Existence of initial algebras

We now generalise Dybjer and Setzer’s model construction from 6.1.3.1. Inspecting the
proof, we see that it indeed is possible to adapt it also for the more general setting of
positive inductive-recursive definitions by making the appropriate adjustments.

We call a morphism (h, k) ∶ (U,T) → (U,T ′) in FamC a splitting morphism if k = idT ,
i.e. T ′○h = T , since these are the chosen morphisms in the split subfibration π ∶ Fam ∣C∣ →
Set. In other words, we write Fam ∣C∣ for the category with the same objects as FamC,
but with splitting morphisms only.

Inspecting the proofs in Section 6.1.3.1, we see that they crucially depend on mor-
phisms being splitting in several places. Luckily, the morphisms involved in the cor-
responding proofs for IR+ actually are! We show that the initial chain of a IR+ functor
actually lives in Fam ∣C∣, which will allow us to modify Dybjer and Setzer’s proof ac-
cordingly.

Lemma 7.21 For every code γ ∶ IR+C the induced functor JγK ∶ FamC→ FamCpreserves
splitting morphisms, i.e. if (f, g) is splitting, then so is JγK(f, g).

Proof. By induction on the structure of the code. The interesting case is γ = δAF . Let
(h, id) ∶ (X,P ○ h) → (Y,P) be a splitting morphism. We have

JδAF K(h, id) = [inh○g ○ JF (P ○ h ○ g)K(h, id) ○ JF→(g∗(id))K(X,P)]g ∶A→X
= [inh○g ○ JF (P ○ h ○ g)K(h, id)]g ∶A→X

where JF (g∗id)K(X,P) = id since both g∗, F and J K are functors. By the induction
hypothesis, each JF (P ○ h ○ g)K(h, id) is splitting. Furthermore injections are splitting
in FamC. Since composition of splitting morphisms is still splitting and the cotuple
of splitting morphisms is also splitting in FamC we conclude that JδA F K(h, id) is a
splitting morphism.

Lemma 7.22 For each γ ∶ IR+C, the initial chain

0→ JγK(0) → JγK2(0) → . . .

consists of splitting morphisms only.

Proof. Recall that the connecting morphisms ωj,k ∶ JγKj(0) → JγKk(0) are uniquely
determined as follows:

• ω0,1 = !JγK(0) is unique.

• ωj+1,k+1 is JγK(ωj,k) ∶ JγK(JγKj(0)) → JγK(JγKk(0)).

• ωj,k is the colimit cocone for j a limit ordinal.

We prove the statement by induction on j. It is certainly true that !JγK(0) ∶ (0, !) → JγK(0)
is an identity at each component – there are none. Thus ω0,1 is a splitting morphism.
At successor stages, we can directly apply Lemma 7.21 and the induction hypothesis.

168

7.2. Positive inductive-recursive definitions

Finally, at limit stages, we use the fact that the colimit lives in Fam ∣C∣ and hence coincides
with the colimit in that category on splitting morphisms, so that the colimit cocone is
splitting.

Inspecting Dybjer and Setzer’s original proof, we see that it now goes through also
for IR+ if we insert appeals to Lemma 7.22 where necessary. To finish the proof, we also
need to ensure that FamC has κ-filtered colimits; this is automatically true if C has all
small connected colimits (compare Remark 7.12), since FamC then is cocomplete. Note
that discrete categories have all small connected colimits for trivial reasons.

Theorem 7.23 Assume that a Mahlo cardinal exists in the meta-theory. If C has con-
nected colimits, then every functor JγK for γ ∶ IR+C has an initial algebra.

7.2.5 Conclusion

We have introduced the theory IR+ of positive inductive-recursive definitions as a
generalisation of inductive-recursive definitions IR. Crucial for the definition of IR+,
where codes and morphisms between codes are defined simultaneously, is having
access to inductive-inductive definitions in the metatheory. We saw further examples
of this when we defined the semantics of IR+, where the general elimination rules
of inductive-inductive definitions were needed to simultaneously interpret codes as
functors and morphisms between codes as natural transformations. The theory IR+, with
IR as a subtheory, hints at the possibility of a more sophisticated analysis of inductive-
recursive data types, where not only a type U and a decoding function T ∶ U →D are
introduced, but also the intrinsic structure between objects in the target type D is taken
into account. Such structure exists for example when D is a setoid, the category Set or
Setop, a groupoid or, in general, an arbitrary category C.

169

Chapter8

Conclusions

Contents
8.1 Summary and discussion . 171
8.2 Further work . 172

In this final chapter, we summarise the content of the thesis and discuss future work.

8.1 Summary and discussion

This thesis claims that

Advanced forms of inductive definitions are important both for programming and
proving in Martin-Löf Type Theory.

In support of this claim, we have studied the class of inductive-inductive definitions,
mostly from a theoretical perspective, but also by concretely exploring problems where
such definitions play a crucial rôle. In more detail, we have:

• Given a finite axiomatisation of inductive-inductive definitions, which generalises
axiomatisations of ordinary inductive definitions and indexed inductive defini-
tions. We argue that this is a natural way to extend a base type theory with a
universe of data types.

• Shown how inductive-inductive definitions can be characterised categorically
as initial objects in a certain category of dialgebras. This shows that inductive-
inductive definitions have an interesting, mathematically well-behaved structure.
This is important for establishing meta-theoretical properties of the system of
data types.

• Modelled inductive-inductive definitions in a straightforward way in set theory.
The model is proof-theoretically wasteful, but conceptually fitting, as it shows

171

8. Conclusions

that a “naı̈ve” mental understanding of inductive-inductive definitions (types are
sets, terms of function type are set-theoretical functions, . . .) is possible.

• Translated a version of inductive-inductive definitions with restricted elimination
rules into the theory of indexed inductive definitions. This shows that the proof-
theoretical strength of this version of inductive-inductive definitions coincides
with the strength of indexed inductive definitions, while the general theory has
the same strength as indexed inductive definitions with “recursive-recursive”
elimination rules.

• Investigated various extensions of inductive-inductive definitions, such as the
definition of generalised families A ∶ Set and B ∶ F (A) → Set, higher towers of
inductive-inductive definitions

A ∶ Set B ∶ A→ Set C ∶ (x ∶ A) → B(x) → Set

and a proof-theoretically strong combination of inductive-inductive and inductive-
recursive definitions. This shows that the theory is adaptable, and also able to
accommodate to the forms of inductive-inductive definitions that actually occur
in the literature.

• Finally, we explored two larger case studies where inductive-inductive definitions
were used to develop actual mathematics, supporting the thesis that advanced
data types can be very helpful for mathematics in a type-theoretical setting.

8.2 Further work
Let discuss some interesting topics for further research:

Internal fixed points Our axiomatisation only allows direct inductive arguments, i.e.
arguments of the form K → A, and not of the form K → List(A). Following Morris et al.
[2009], we could hope to support the latter by adding internal fixed points to our theory.
Morris et al. do this for indexed inductive definitions; it is unclear how easy it would
be to extend their system to cover also inductive-inductive definitions. For the case
of such nested definitions in the proof assistant Minlog (working with simple types
and ordinary first order logic), see Miyamoto, Nordvall Forsberg, and Schwichtenberg
[2013].

Coinductive-coinductive definitions In this thesis, we have focused exclusively on
inductive definitions, initial algebras and least fixed points. It is natural to ask how
much of the current work carries over to coinductive definitions, terminal algebras and
greatest fixed points. Is there a theory of coinductive-coinductive definitions? What
about letting the index set A be inductive, but the family B ∶ A → Set coinductive or
vice versa, leading to inductive-coinductive or coinductive-inductive definitions? Are
such theories useful? It seems easier to make sense of these questions compared to

172

8.2. Further work

the corresponding questions for inductive-recursive definition, where there is a tighter
interplay between the definition of the two components. Recently Capretta [2013] has
made progress in this direction for small inductive-recursive definitions.

An abstract framework Is there a uniform framework which allows general combi-
nations of inductive-inductive and inductive-recursive definitions? Our recent work
on fibrational presentations of inductive-recursive definitions [Ghani, Malatesta, Nord-
vall Forsberg, and Setzer, 2013b] seems to be a promising starting point. This might
make it possible to e.g. allow also a second recursively defined function

T ′ ∶ (x ∶ A) → B(x) → T (x) →D ,

while at the same time reduce the syntactical complexity of the theory.

Implementations It would be interesting to see what it would take to actually imple-
ment the theories presented in this thesis, especially the extensions from Chapter 6. I
conjecture that the axiomatisation in Chapter 3 would be relatively simple to implement
– all that is needed is the addition of some constants and some reductions to a standard
implementation of Type Theory. One would probably end up with something similar
to the implementation of data types in Epigram 2 [Chapman et al., 2010]. It remains to
be seen if it is possible to make the codes for inductive-inductive definitions levitate as
well.

Going beyond inductive-inductive and inductive-recursive definitions Finally, in
the proof-theoretical landscape, inductive-inductive, and even inductive-recursive def-
initions are quite tame. Anton Setzer has invented several universes that go beyond
inductive-recursive definitions [Setzer, 2008; Kahle and Setzer, 2010], but are still consis-
tent and (arguably) constructively justified. Is there a theory of data types that contain
these wilder examples?

173

Appendix A

Agda formalisations

This appendix contains examples of inductive-inductive data types in Agda, as well as
Agda formalisations of the axiomatisations of inductive-inductive definitions (from Sec-
tion 3.2.3), inductive-recursive definitions (from Section 3.2.2) and inductive-inductive-
recursive definitions (from Section 6.1).

All code type check with Agda 2.3.2.2 and the standard library version 0.7.

A.1 Examples

We give Agda implementations of some inductive-inductive definitions considered in
this thesis.

A.1.1 Contexts and types and terms

The contexts and types and terms from Examples 3.1 and 6.1.

module contexts-types-terms where

mutual

data Ctxt : Set where

E : Ctxt

:: : (Γ : Ctxt) -> Ty Γ -> Ctxt

data Ty : Ctxt -> Set where

Ì : (Γ : Ctxt) -> Ty Γ
‘Set : (Γ : Ctxt) -> Ty Γ
El : (Γ : Ctxt) -> Tm Γ (‘Set Γ) -> Ty Γ
Pi : (Γ : Ctxt) -> (A : Ty Γ) -> Ty (Γ :: A) -> Ty Γ
Wk : (Γ : Ctxt) -> (A : Ty Γ) -> Ty Γ -> Ty (Γ :: A)

data Tm : (Γ : Ctxt) -> Ty Γ -> Set where

top : (Γ : Ctxt) -> (A : Ty Γ) -> Tm (Γ :: A) (Wk Γ A A)

wk : (Γ : Ctxt) -> (A : Ty Γ) -> (B : Ty Γ) -> Tm Γ B

175

A. Agda formalisations

-> Tm (Γ :: A) (Wk Γ A B)

lam : (Γ : Ctxt) -> (A : Ty Γ) -> (B : Ty (Γ :: A)) -> Tm (Γ :: A) B

-> Tm Γ (Pi Γ A B)

A.1.2 Sorted lists

Sorted lists from Example 3.2, together with the insert function from Section 3.2.5.1.

module sortedList where

open import Data.Nat

open import Relation.Nullary

open import Relation.Binary

open import Data.Empty

open import Data.Unit using (⊺)

-- Introduction rules

mutual

data SList : Set where

[] : SList

::⟨_ : (x : N) -> (ys : SList) -> x ≤L ys → SList

data _≤L_ : (n : N) -> SList -> Set where

triv : {n : N} -> n ≤L []

cons : {m : N} -> {n : N} -> {ys : SList} -> {p : n ≤L ys} ->

(m ≤ n) -> m ≤L ys -> m ≤L (n :: ys ⟨ p)

-- An example sorted list

private

ex : SList

ex = 0 :: 1 :: 2 :: 3 :: [] ⟨ triv

⟨ cons (s≤s (s≤s z≤n)) triv

⟨ cons (s≤s z≤n) (cons (s≤s z≤n) triv)

⟨ cons z≤n (cons z≤n (cons z≤n triv))

-- Elimination rules

mutual

elimSList : (P : SList -> Set)

(Q : (n : N) -> (ys : SList) -> n ≤L ys -> P ys -> Set) ->

(step[] : P [])

(step:: : (n : N) -> (ys : SList) -> (p : n ≤L ys) ->

176

A.1. Examples

(pp : P ys) -> Q n ys p pp -> P (n :: ys ⟨ p)) ->

(steptriv : (n : N) -> Q n [] triv step[])

(stepcons : (m : N) -> {n : N} -> {ys : SList} ->

{p : n ≤L ys} -> (m<n : m ≤ n) -> (p’ : m ≤L ys) ->

(pp : P ys) -> (qq : Q n ys p pp) ->

(qqq : Q m ys p’ pp)

-> Q m (n :: ys ⟨ p) (cons m<n p’)

(step:: n ys p pp qq))

(ys : SList) -> P ys

elimSList P Q step[] step:: steptriv stepcons [] = step[]

elimSList P Q step[] step:: steptriv stepcons (n :: ys ⟨ p)

= step:: n ys p (elimSList P Q step[] step:: steptriv stepcons ys)

(elim≤ P Q step[] step:: steptriv stepcons n ys p)

elim≤ : (P : SList -> Set)

(Q : (n : N) -> (ys : SList) -> n ≤L ys -> P ys -> Set) ->

(step[] : P [])

(step:: : (n : N) -> (ys : SList) -> (p : n ≤L ys) ->

(pp : P ys) -> Q n ys p pp -> P (n :: ys ⟨ p)) ->

(steptriv : (n : N) -> Q n [] triv step[])

(stepcons : (m : N) -> {n : N} -> {ys : SList} ->

{p : n ≤L ys} -> (m<n : m ≤ n) -> (p’ : m ≤L ys) ->

(pp : P ys) -> (qq : Q n ys p pp) ->

(qqq : Q m ys p’ pp)

-> Q m (n :: ys ⟨ p) (cons m<n p’)

(step:: n ys p pp qq))

(n : N) -> (ys : SList) -> (p : n ≤L ys)

-> Q n ys p (elimSList P Q step[] step:: steptriv stepcons ys)

elim≤ P Q step[] step:: steptriv stepcons m [] triv = steptriv m

elim≤ P Q step[] step:: steptriv stepcons m (n :: ys ⟨ p) (cons q p’)

= stepcons m q p’ (elimSList P Q step[] step:: steptriv stepcons ys)

(elim≤ P Q step[] step:: steptriv stepcons n ys p)

(elim≤ P Q step[] step:: steptriv stepcons m ys p’)

-- Some lemmas about ≤ and ≤L

trans-≤ : ∀ {k m n} -> k ≤ m -> m ≤ n -> k ≤ n

trans-≤ = IsDecTotalOrder.trans

(DecTotalOrder.isDecTotalOrder Data.Nat.decTotalOrder)

≤L-trans : ∀ {x y} -> (zs : SList) -> x ≤ y -> y ≤L zs -> x ≤L zs

≤L-trans [] x<y all = triv

≤L-trans (y’ :: ys ⟨ p) x<y (cons y<y’ y<ys)

= cons (trans-≤ x<y y<y’) (≤L-trans ys x<y y<ys)

¬x<y→y<x : {x y : N} -> (x ≤ y -> �) -> y ≤ x

¬x<y→y<x {zero} p = �-elim (p z≤n)
¬x<y→y<x {y = zero} p = z≤n

177

A. Agda formalisations

¬x<y→y<x {suc n} {suc m} p = s≤s (¬x<y→y<x (ń x → p (s≤s x)))

-- Insert (defined using pattern matching for simplicity)

mutual

insert : (m : N) -> SList -> SList

insert m [] = m :: [] ⟨ triv

insert m (n :: ys ⟨ p) with m ≤? n

... | yes q = m :: (n :: ys ⟨ p) ⟨ (cons q (≤L-trans ys q p))

... | no ¬q = n :: (insert m ys) ⟨ lemma (¬x<y→y<x ¬q) p

lemma : ∀ {x y ys} -> y ≤ x -> y ≤L ys -> y ≤L (insert x ys)

lemma {ys = []} y≤x y≤ys = cons y≤x y≤ys
lemma {x} {y} {y’ :: ys ⟨ p} y≤x (cons y≤y’ y≤ys) with x ≤? y’

... | yes q = cons y≤x (cons y≤y’ y≤ys)

... | no ¬q = cons y≤y’ (lemma {x} {y} {ys} y≤x y≤ys)

-- We can also forget that a sorted list is sorted

open import Data.List

forget : SList -> List N
forget [] = []

forget (x :: ys ⟨ y) = x :: (forget ys)

Insertion sort

We can use insert to define insertsort, and then define a data type of list permuta-
tions as alluded to in the introduction and prove insertsort correct:

open import Data.Product

open import Relation.Binary.PropositionalEquality

renaming (trans to trans-≡; sym to sym-≡)
open import Data.List.Any hiding (tail)

open Membership-≡

-- Permutations of lists

data Permutation {A : Set} : List A -> List A -> Set where

refl : {ys : List A} -> Permutation ys ys

head : {x y : A}{xs ys : List A} -> Permutation xs ys

-> Permutation (x :: y :: xs) (y :: x :: ys)

tail : {x : A}{xs ys : List A} -> Permutation xs ys

-> Permutation (x :: xs) (x :: ys)

178

A.1. Examples

trans : {xs ys zs : List A} -> Permutation xs ys -> Permutation ys zs

-> Permutation xs zs

-- Permutations are equivalence relations

sym : {A : Set} -> {xs ys : List A} -> Permutation xs ys -> Permutation ys xs

sym refl = refl

sym (head p) = head (sym p)

sym (tail p) = tail (sym p)

sym (trans p q) = trans (sym q) (sym p)

perm-setoid : {A : Set} -> Setoid _ _

perm-setoid {A} = record { Carrier = List A;

≈ = Permutation;

isEquivalence = record { refl = refl;

sym = sym;

trans = trans } }

-- Sanity check: the definition makes sense

perm-correct : {A : Set}{xs ys : List A} -> Permutation xs ys -> xs ⊆ ys

perm-correct refl q = q

perm-correct (head p) (here px) = there (here px)

perm-correct (head p) (there (here px)) = here px

perm-correct (head p) (there (there r)) = there (there (perm-correct p r))

perm-correct (tail p) (here px) = here px

perm-correct (tail p) (there r) = there (perm-correct p r)

perm-correct (trans p q) r = perm-correct q (perm-correct p r)

lemma-perm-length : {A : Set}{xs ys : List A} -> Permutation xs ys

-> length xs ≡ length ys

lemma-perm-length refl = refl

lemma-perm-length (head p) rewrite lemma-perm-length p = refl

lemma-perm-length (tail p) rewrite lemma-perm-length p = refl

lemma-perm-length (trans p q) rewrite lemma-perm-length p

| lemma-perm-length q = refl

--

-- Permutations of an ordinary and a sorted list

Permutation’ : List N -> SList -> Set

Permutation’ xs ys = Permutation xs (forget ys)

-- Peano’s fourth axiom, needed below to rule out the possibility of a

-- permutation between an empty and a non-empty list (not obvious because

-- of trans)

Peano-four : {n : N} -> zero ≡ suc n -> �
Peano-four q = subst (ń { zero -> N ; (suc n) -> �}) q 0

179

A. Agda formalisations

-- Inserting an element preserves permutations

lemma-insert : ∀ {x} xs ys -> Permutation’ xs ys

-> Permutation’ (x :: xs) (insert x ys)

lemma-insert [] [] p = refl

lemma-insert [] (y :: ys ⟨ p) q = �-elim (Peano-four (lemma-perm-length q))

lemma-insert (x :: xs) [] q = �-elim (Peano-four (sym-≡ (lemma-perm-length q)))

lemma-insert {z} (x :: xs) (y :: ys ⟨ p) w with z ≤? y

... | yes _ = tail w

... | no _ = begin

z :: x :: xs

≈⟨ tail w ⟩
z :: y :: forget ys

≈⟨ head refl ⟩
y :: z :: forget ys

≈⟨ tail (lemma-insert (forget ys) ys refl) ⟩
y :: forget (insert z ys)

∎
where open import Relation.Binary.EqReasoning (perm-setoid {N})

-- Insertion sort, with correctness proof

insertsort : (xs : List N) -> Σ[ys ∈ SList] Permutation’ xs ys

insertsort [] = [] , refl

insertsort (x :: xs) = insert x (proj1 (insertsort xs)) ,

lemma-insert xs _ (proj2 (insertsort xs))

A.1.3 Dense completion of an ordered set

The dense completion of an ordered set from Example 3.3.

module dense (S : Set) (_<_ : S -> S -> Set) where

open import Data.Product

mutual

data S* : Set where

η : S -> S*

mid : (s t : S*) -> s <* t -> S*

data _<*_ : S* -> S* -> Set where

η< : {s t : S} -> s < t -> η s <* η t

midl : {s t : S*} -> (p : s <* t) -> mid s t p <* t

midr : {s t : S*} -> (p : s <* t) -> s <* mid s t p

module universal-property

180

A.2. Axiomatisations

(S’ : Set)(_<’_ : S’ -> S’ -> Set)

(<’-dense : {x y : S’} -> x <’ y -> Σ[z ∈ S’] x <’ z × z <’ y)

(f : S -> S’)(f< : {x y : S} -> x < y -> f x <’ f y) where

mutual

h : S* -> S’

h (η s) = f s

h (mid s t p) = proj1 (<’-dense {h s} {h t} (h< p))

h< : {s t : S*} -> s <* t -> h s <’ h t

h< (η< p) = f< p

h< (midr {x} {y} p) = proj1 (proj2 (<’-dense (h< p)))

h< (midl p) = proj2 (proj2 (<’-dense (h< p)))

A.2 Axiomatisations
We give Agda implementations of the axiomatisations of inductive-inductive, inductive-
recursive and inductive-inductive-recursive definitions respectively, together with some
example codes.

We will use the following options:

{-# OPTIONS --without-K #-}

{-# OPTIONS --no-positivity-check #-}

{-# OPTIONS --sized-types #-}

We use --without-K to show that we can, and hence that we should be compatible
with homotopy Type Theory. The option --no-positivity-check is needed since
Agda is not clever enough to see that ArgA and ArgB only use their arguments in
strictly positive position. We use sized types (i.e. --sized-types) to convince Agda
that repAbar below is terminating. At some points, we will also turn off the termination
checker, since Agda cannot see that recursive calls are only done at smaller arguments.

A.2.1 Prelude

We start by introducing some basic definitions. Most of these can be found in the
standard library 0.7, sometimes with less preferable names chosen, sometimes without
universe polymorphism. For these reasons, we prefer to define our own versions.

open import Function

open import Relation.Binary.PropositionalEquality hiding ([_])

open Relation.Binary.PropositionalEquality.≡-Reasoning
open import Data.Product

open import Level renaming (zero to zeroL ; suc to sucL)

open import Size

record ⊺ {a : Level} : Set a where

data _+_ (A B : Set) : Set where

181

A. Agda formalisations

inl : A -> A + B

inr : B -> A + B

infixr 40 _+_

[_,_] : ∀ {a} → {A B : Set}{C : A + B -> Set a} ->

((a : A) -> C (inl a)) ->

((b : B) -> C (inr b))

-> (c : (A + B)) -> C c

[f , g] (inl a) = f a

[f , g] (inr b) = g b

data � : Set where

�-elim : ∀ {a} → {A : � -> Set a} -> (x : �) -> A x

�-elim ()

data N2 : Set where

tt : N2
ff : N2

J : {a b : Level}{A : Set a} -> (P : (x y : A) -> x ≡ y -> Set b) ->

(x : A) -> P x x refl -> (y : A) -> (p : x ≡ y) -> P x y p

J P x px .x refl = px

cong2’ : {a b c : Level} {A : Set a} {B : A -> Set b} {C : Set c}

(f : (x : A) → B x → C) {x y : A} {u : B x}{v : B y} →
(p : x ≡ y) → subst B p u ≡ v → f x u ≡ f y v

cong2’ f refl refl = refl

A.2.2 Inductive-inductive definitions
module indind where

--

data SPA (Xref : Set) : Set1 where

nilA : SPA Xref

nonind : (K : Set) -> (G : K -> SPA Xref) -> SPA Xref

A-ind : (K : Set) -> (G : SPA (Xref + K)) -> SPA Xref

B-ind : (K : Set) -> (h : K -> Xref) -> (G : SPA Xref) -> SPA Xref

SPA’ : Set1

SPA’ = SPA �

ArgA : (Xref : Set) ->

(GA : SPA Xref) ->

(X : Set)(Y : X -> Set) ->

(repX : Xref -> X) -> Set

182

A.2. Axiomatisations

ArgA Xref nilA X Y repX = ⊺
ArgA Xref (nonind K G) X Y repX = Σ[e ∈ K] ArgA Xref (G e) X Y repX

ArgA Xref (A-ind K G) X Y repX

= Σ[j ∈ (K -> X)] ArgA (Xref + K) G X Y [repX , j]

ArgA Xref (B-ind K h G) X Y repX

= Σ[j ∈ ((e : K) -> Y (repX (h e)))] ArgA Xref G X Y repX

ArgA’ : (GA : SPA’) -> (X : Set) -> (Y : X -> Set) -> Set

ArgA’ GA X Y = ArgA � GA X Y �-elim

-- morphism part of the functor ArgA

ArgAfun : {Xref : Set} ->

(G : SPA Xref) ->

{X : Set}{Y : X -> Set}

{repX : Xref -> X} ->

{X* : Set}{Y* : X* -> Set} ->

{repX* : Xref -> X*} ->

(g : X -> X*)(g’ : (a : X) -> Y a -> Y* (g a)) ->

(p : (e : Xref) -> Y* (g (repX e)) -> Y* (repX* e)) ->

ArgA Xref G X Y repX -> ArgA Xref G X* Y* repX*

ArgAfun nilA g g’ p _ = _

ArgAfun (nonind K G) g g’ p (k , y)

= (k , ArgAfun (G k) g g’ p y)

ArgAfun (A-ind K G) g g’ p (j , y)

= (g ○ j , ArgAfun G g g’ ([p , (ń k -> id)]) y)

ArgAfun (B-ind K h G) {repX = repX} g g’ p (j , y)

= ((ń k -> p (h k) (g’ (repX (h k)) (j k))) , ArgAfun G g g’ p y)

ArgAfun’ : (GA : SPA’) ->

{X : Set}{Y : X -> Set} ->

{X* : Set}{Y* : X* -> Set} ->

(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) ->

ArgA’ GA X Y -> ArgA’ GA X* Y*

ArgAfun’ GA f g = ArgAfun GA f g �-elim

mutual

data Aterm (G : SPA’) (Xref : Set) (Yref : Set) : {i : Size} -> Set where

aref : ∀ {i} -> Xref -> Aterm G Xref Yref {↑ i}

bref : ∀ {i} -> Yref -> Aterm G Xref Yref {↑ i}

arg : ∀ {i} -> ArgA’ G (Aterm G Xref Yref {i})

(Bterm G {Xref} {Yref})

-> Aterm G Xref Yref {↑ i}

183

A. Agda formalisations

Bterm : ∀ {i} -> (G : SPA’) -> {Xref Yref : Set} ->

Aterm G Xref Yref {i} -> Set

Bterm G (aref y) = �
Bterm G (bref y) = ⊺
Bterm G (arg y) = �

mutual

repAbar : ∀ {i} -> (G : SPA’) ->

{Xref : Set} -> {Yref : Set} ->

{X : Set} -> {Y : X -> Set} ->

(introA : ArgA’ G X Y -> X) ->

(repX : Xref -> X) ->

(repindex : Yref -> X) ->

(repY : (b : Yref) -> Y (repindex b)) ->

Aterm G Xref Yref {i} -> X

repAbar G introA repX repindex repY (aref y) = repX y

repAbar G introA repX repindex repY (bref y) = repindex y

repAbar G introA repX repindex repY (arg {i} y)

= introA

(ArgAfun’ G
(repAbar {i} G introA repX repindex repY)

(repBbar G introA repX repindex repY)

y)

repBbar : ∀ {i} -> (G : SPA’) ->

{Xref : Set} -> {Yref : Set} ->

{X : Set} -> {Y : X -> Set} ->

(introA : ArgA’ G X Y -> X) ->

(repX : Xref -> X) ->

(repindex : Yref -> X) ->

(repY : (b : Yref) -> Y (repindex b)) ->

(t : Aterm G Xref Yref {i})

-> Bterm G t -> Y (repAbar G introA repX repindex repY t)

repBbar G introA repX repindex repY (aref a) = �-elim
repBbar G introA repX repindex repY (bref b) = ń _ -> repY b

repBbar G introA repX repindex repY (arg y) = �-elim

data SPB (Xref : Set)(Yref : Set)(GA : SPA’) : Set1 where

nilB : Aterm GA Xref Yref -> SPB Xref Yref GA
nonind : (K : Set) -> (G : K -> SPB Xref Yref GA) -> SPB Xref Yref GA
A-ind : (K : Set) -> (G : SPB (Xref + K) Yref GA) -> SPB Xref Yref GA
B-ind : (K : Set) -> (h : (k : K) -> Aterm GA Xref Yref) ->

(G : SPB Xref (Yref + K) GA) -> SPB Xref Yref GA

SPB’ : (GA : SPA’) -> Set1

SPB’ = SPB � �

ArgB : (GA : SPA’) ->

184

A.2. Axiomatisations

(Xref : Set)(Yref : Set) ->

(GB : SPB Xref Yref GA) ->

(X : Set)(Y : X -> Set)(inA : ArgA’ GA X Y -> X)

(repX : Xref -> X) ->

(repIndex : Yref -> X) ->

(repY : (x : Yref) -> Y (repIndex x))

-> Set

ArgB GA Xref Yref (nilB a) X Y inA repX repIndex repY = ⊺
ArgB GA Xref Yref (nonind K G) X Y inA repX repIndex repY

= Σ[e ∈ K] ArgB GA Xref Yref (G e) X Y inA repX repIndex repY

ArgB GA Xref Yref (A-ind K G) X Y inA repX repIndex repY

= Σ[j ∈ (K -> X)]

ArgB GA (Xref + K) Yref G X Y inA [repX , j] repIndex repY

ArgB GA Xref Yref (B-ind K h G) X Y inA repX repIndex repY

= Σ[j ∈ ((e : K) -> Y (repAbar GA inA repX repIndex repY (h e)))]

ArgB GA Xref (Yref + K) G X Y inA repX

[repIndex , ((repAbar GA inA repX repIndex repY) ○ h)]

[repY , j]

ArgB’ : (GA : SPA’) ->

(GB : SPB’ GA) ->

(X : Set)(Y : X -> Set)(inA : ArgA’ GA X Y -> X) -> Set

ArgB’ GA GB X Y inA = ArgB GA � � GB X Y inA �-elim �-elim �-elim

Index : {GA : SPA’} ->

{Xref : Set}{Yref : Set} ->

(GB : SPB Xref Yref GA) ->

{X : Set}{Y : X -> Set}{inA : ArgA’ GA X Y -> X} ->

{repX : Xref -> X} ->

{repIndex : Yref -> X} ->

{repY : (x : Yref) -> Y (repIndex x)} ->

ArgB GA Xref Yref GB X Y inA repX repIndex repY -> X

Index {GA = GA} (nilB a) {inA = inA} {repX} {repIndex} {repY} _

= repAbar GA inA repX repIndex repY a

Index (nonind K G)(k , y) = Index (G k) y

Index (A-ind K G) (j , y) = Index G y

Index (B-ind K h G) (j , y) = Index G y

-- Introduction rules

mutual

data A (GA : SPA’)(GB : SPB’ GA) : Set where

introA : ArgA’ GA (A GA GB) (B GA GB) -> (A GA GB)

data B (GA : SPA’)(GB : SPB’ GA) : (A GA GB) -> Set where

185

A. Agda formalisations

introB : (b : ArgB’ GA GB (A GA GB) (B GA GB) introA)

-> (B GA GB) (Index GB b)

A.2.2.1 Examples

module examples-indind where

open indind

-- Encoding multiple constructors into one

++ : {Aref : Set} -> SPA Aref -> SPA Aref -> SPA Aref

G ++ ψ = nonind N2 (ń { tt → G ; ff → ψ })

+++ : {Aref Bref : Set}{GA : SPA’} ->

SPB Aref Bref GA -> SPB Aref Bref GA -> SPB Aref Bref GA
G +++ ψ = nonind N2 (ń { tt → G ; ff → ψ })

infixr 40 _++_

infixr 40 _+++_

-- Single inductive arguments

A-ind1 : {Aref : Set} -> SPA (Aref + ⊺) -> SPA Aref

A-ind1 G = A-ind ⊺ G

A-indB1 : {GA : SPA’}{Aref Bref : Set} -> SPB (Aref + ⊺) Bref GA
-> SPB Aref Bref GA

A-indB1 G = A-ind ⊺ G

B-ind1 : {Aref : Set} -> Aref -> SPA Aref -> SPA Aref

B-ind1 i G = B-ind ⊺ (ń _ → i) G

B-indB1 : {GA : SPA’}{Aref Bref : Set} -> Aterm GA Aref Bref

-> SPB Aref (Bref + ⊺) GA -> SPB Aref Bref GA
B-indB1 i G = B-ind ⊺ (ń _ → i) G

-- Non-dependent non-inductive arguments

nonind’ : {Aref : Set} -> (K : Set) -> (G : SPA Aref) -> SPA Aref

nonind’ K G = nonind K (ń _ → G)

nonindB’ : ∀ {Aref Bref GA} -> (K : Set) -> (G : SPB Aref Bref GA)
-> SPB Aref Bref GA

nonindB’ K G = nonind K (ń _ → G)

-- Examples

---------------------Ctxt and Types------------------

GCtxt : SPA’

186

A.2. Axiomatisations

GCtxt = nilA ++ A-ind1 (B-ind1 (inr _) nilA)

GTy : SPB’ GCtxt
GTy = A-indB1 (nilB (aref (inr _)))

+++ A-indB1

(B-indB1 (aref (inr _))

(B-indB1

(arg (ff , ((ń _ → bref (inr _)) , ((ń _ → _) , _))))

(nilB (aref (inr _)))))

Ctxt : Set

Ctxt = A GCtxt GTy

Ty : Ctxt -> Set

Ty = B GCtxt GTy

E : Ctxt

E = introA (tt , _)

cons : (Γ : Ctxt) -> Ty Γ -> Ctxt

cons Γ σ = introA ((ff , (ń _ → Γ) , (ń _ → σ) , _))

Ì : {Γ : Ctxt} -> Ty Γ
Ì {Γ} = introB (tt , ((ń _ → Γ) , _))

Π : (Γ : Ctxt) -> (A : Ty Γ) -> (B : Ty (cons Γ A)) -> Ty Γ
Π Γ A B = introB (ff , ((ń _ → Γ) , ((ń _ → A) , ((ń _ → B) , _))))

---------------------Natural numbers----------------

GNat : SPA’

GNat = nilA ++ A-ind ⊺ nilA

GDummy : SPB’ GNat
GDummy = A-indB1 (nilB (aref (inr _)))

N : Set

N = A GNat GDummy

zero : N
zero = introA (tt , _)

suc : N -> N
suc n = introA (ff , ((ń _ → n) , _))

---------------------Finite sets---------------------

GN’ : SPA’

187

A. Agda formalisations

GN’ = nonind N (ń n → nilA)

GFin : SPB’ GN’
GFin = nonind N (ń n → nilB (arg (suc n , _)))

+++ nonind N (ń n → B-indB1 (arg (n , _)) (nilB (arg ((suc n) , _))))

N’ : Set

N’ = A GN’ GFin

i : N -> N’
i n = introA (n , _)

Fin : N -> Set

Fin n = B GN’ GFin (i n)

fz : (n : N) -> Fin (suc n)

fz n = introB (tt , (n , _))

fsuc : (n : N) -> Fin n -> Fin (suc n)

fsuc n m = introB (ff , n , ((ń _ → m) , _))

A.2.2.2 Simple elimination rules

module elim-indind-simple where

open indind

IHA : {Aref : Set}(GA : SPA Aref) ->

{A : Set}{B : A -> Set} ->

{repA : Aref → A} ->

(P : A -> Set)(Q : (a : A) -> B a -> Set) ->

ArgA Aref GA A B repA -> Set

IHA nilA P Q _ = ⊺
IHA (nonind K G) P Q (k , y) = IHA (G k) P Q y

IHA (A-ind K G) P Q (j , y) = ((k : K) -> P (j k)) × IHA G P Q y

IHA (B-ind K h G) {repA = repA} P Q (j , y)

= ((k : K) -> Q (repA (h k)) (j k)) × IHA G P Q y

IHA’ : (GA : SPA’) ->

{A : Set}{B : A -> Set} ->

(P : A -> Set)(Q : (a : A) -> B a -> Set) ->

ArgA’ GA A B -> Set

IHA’ GA = IHA GA {repA = �-elim}

IHB : (GA : SPA’){Aref Bref : Set} -> (GB : SPB Aref Bref GA) ->

{A : Set}{B : A -> Set}{inA : ArgA’ GA A B -> A} ->

{repA : Aref → A} ->

{repIndex : Bref -> A} ->

{repB : (x : Bref) -> B (repIndex x)} ->

188

A.2. Axiomatisations

(P : A -> Set)(Q : (a : A) -> B a -> Set) ->

ArgB GA Aref Bref GB A B inA repA repIndex repB -> Set

IHB GA (nilB _) P Q _ = ⊺
IHB GA (nonind K G) P Q (k , y) = IHB GA (G k) P Q y

IHB GA (A-ind K G) P Q (j , y) = ((k : K) -> P (j k)) × IHB GA G P Q y

IHB GA (B-ind K h G) {inA = inA} {repA} {repIndex} {repB} P Q (j , y)

= ((k : K) -> Q (repAbar GA inA repA repIndex repB (h k)) (j k))

× IHB GA G P Q y

IHB’ : (GA : SPA’)(GB : SPB’ GA) ->

{A : Set}{B : A -> Set}{inA : ArgA’ GA A B -> A} ->

(P : A -> Set)(Q : (a : A) -> B a -> Set) ->

ArgB’ GA GB A B inA -> Set

IHB’ GA GB P Q y = IHB GA GB P Q y

mapIHA : {Aref : Set}(GA : SPA Aref) ->

{A : Set}{B : A -> Set} ->

{repA : Aref -> A} ->

{P : A -> Set}{Q : (a : A) -> B a -> Set} ->

(f : (a : A) -> P a)(g : (a : A) -> (b : B a) -> Q a b) ->

(a : ArgA Aref GA A B repA) -> IHA GA P Q a

mapIHA nilA f g _ = _

mapIHA (nonind K G) f g (k , y) = mapIHA (G k) f g y

mapIHA (A-ind K G) f g (j , y) = (f ○ j , mapIHA G f g y)

mapIHA (B-ind K h G) {repA = repA} f g (j , y)

= ((ń k → g (repA (h k)) (j k)) , mapIHA G f g y)

mapIHA’ : (GA : SPA’) ->

{A : Set}{B : A -> Set} ->

{P : A -> Set}{Q : (a : A) -> B a -> Set} ->

(f : (a : A) -> P a)(g : (a : A) -> (b : B a) -> Q a b) ->

(a : ArgA’ GA A B) -> IHA’ GA P Q a

mapIHA’ GA = mapIHA GA

mapIHB : (GA : SPA’){Aref Bref : Set} -> (GB : SPB Aref Bref GA) ->

{A : Set}{B : A -> Set}{inA : ArgA’ GA A B -> A} ->

{repA : Aref → A} ->

{repIndex : Bref -> A} ->

{repB : (x : Bref) -> B (repIndex x)} ->

{P : A -> Set}{Q : (a : A) -> B a -> Set} ->

(f : (a : A) -> P a)(g : (a : A) -> (b : B a) -> Q a b) ->

(y : ArgB GA Aref Bref GB A B inA repA repIndex repB)

-> IHB GA GB P Q y

mapIHB GA (nilB _) f g _ = _

mapIHB GA (nonind K G) f g (k , y) = mapIHB GA (G k) f g y

mapIHB GA (A-ind K G) f g (j , y) = (f ○ j , mapIHB GA G f g y)

mapIHB GA (B-ind K h G) {inA = inA} {repA} {repIndex} {repB} f g (j , y)

189

A. Agda formalisations

= ((ń k → g (repAbar GA inA repA repIndex repB (h k)) (j k)) ,

mapIHB GA G f g y)

mapIHB’ : (GA : SPA’)(GB : SPB’ GA) ->

{A : Set}{B : A → Set}{inA : ArgA’ GA A B -> A} ->

{P : A -> Set} ->

{Q : (a : A) -> B a -> Set} ->

(f : (a : A) -> P a)(g : (a : A) -> (b : B a) -> Q a b) ->

(y : ArgB’ GA GB A B inA) -> IHB’ GA GB P Q y

mapIHB’ GA GB f g y = mapIHB GA GB f g y

{-# NO_TERMINATION_CHECK #-}

mutual

elimA : (GA : SPA’)(GB : SPB’ GA) ->

(P : (A GA GB) -> Set) ->

(Q : (a : (A GA GB)) -> (b : (B GA GB) a) -> Set) ->

(stepA : (x : ArgA’ GA (A GA GB) (B GA GB))
-> IHA’ GA P Q x -> P (introA x)) ->

(stepB : (y : ArgB’ GA GB (A GA GB) (B GA GB) introA) ->

(ybar : IHB’ GA GB P Q y) -> Q (Index GB y) (introB y)) ->

(a : (A GA GB)) -> P a

elimA GA GB P Q stepA stepB (introA a)

= stepA a (mapIHA’ GA (elimA GA GB P Q stepA stepB)

(elimB GA GB P Q stepA stepB) a)

elimB : (GA : SPA’)(GB : SPB’ GA) ->

(P : (A GA GB) -> Set) ->

(Q : (a : (A GA GB)) -> (b : (B GA GB) a) -> Set) ->

(stepA : (x : ArgA’ GA (A GA GB) (B GA GB))
-> IHA’ GA P Q x -> P (introA x)) ->

(stepB : (y : ArgB’ GA GB (A GA GB) (B GA GB) introA) ->

(ybar : IHB’ GA GB P Q y) -> Q (Index GB y) (introB y)) ->

(a : A GA GB) -> (b : B GA GB a) -> Q a b

elimB GA GB P Q stepA stepB .(Index GB b) (introB b)

= stepB b (mapIHB’ GA GB (elimA GA GB P Q stepA stepB)

(elimB GA GB P Q stepA stepB) b)

A.2.3 Inductive-recursive definitions
module IR (D : Set1) where

data OP : Set1 where

Ì : D -> OP

σ : (A : Set) -> (f : A -> OP) -> OP

δ : (A : Set) -> (F : (A -> D) -> OP) -> OP

J_K0 : OP -> (U : Set)(T : U -> D) -> Set

J_K0 (Ì d) U T = ⊺
J_K0 (σ A f) U T = Σ[a ∈ A] J f a K0 U T

190

A.2. Axiomatisations

J_K0 (δ A F) U T = Σ[g ∈ (A -> U)] J F (T ○ g) K0 U T

J_K1 : (G : OP) -> (U : Set)(T : U -> D) -> J G K0 U T -> D

J_K1 (Ì d) U T _ = d

J_K1 (σ A f) U T (a , x) = J f a K1 U T x

J_K1 (δ A F) U T (g , x) = J F (T ○ g) K1 U T x

A.2.4 Inductive-inductive-recursive definitions

open import Relation.Binary.PropositionalEquality.TrustMe

ext : {a b : Level} -> Extensionality a b

ext p = trustMe

module IIR (D : Set1) where

--

data SPA (Xref : Set) : Set1 where

nilA : D -> SPA Xref

nonind : (K : Set) -> (G : K -> SPA Xref) -> SPA Xref

A-ind : (K : Set) -> (G : (K -> D) -> SPA (Xref + K)) -> SPA Xref

B-ind : (K : Set) -> (h : K -> Xref) -> (G : SPA Xref) -> SPA Xref

SPA’ : Set1

SPA’ = SPA �

ArgA : (Xref : Set) ->

(GA : SPA Xref) ->

(X : Set)(Y : X -> Set) ->

(T : X -> D) ->

(repX : Xref -> X) -> Set

ArgA Xref (nilA _) X Y T repX = ⊺
ArgA Xref (nonind K G) X Y T repX = Σ[e ∈ K] ArgA Xref (G e) X Y T repX

ArgA Xref (A-ind K G) X Y T repX

= Σ[j ∈ (K -> X)] ArgA (Xref + K) (G (T ○ j)) X Y T [repX , j]

ArgA Xref (B-ind K h G) X Y T repX

= Σ[j ∈ ((e : K) → Y (repX (h e)))] ArgA Xref G X Y T repX

ArgA’ : (GA : SPA’) -> (X : Set) -> (Y : X -> Set) -> (T : X -> D) -> Set

ArgA’ GA X Y T = ArgA � GA X Y T �-elim

{- morphism part of the functor ArgA -}

ArgAfun : {Xref : Set} ->

(G : SPA Xref) ->

{X : Set}{Y : X -> Set}{T : X -> D}

{repX : Xref -> X} ->

191

A. Agda formalisations

{X* : Set}{Y* : X* -> Set}{T* : X* -> D} ->

{repX* : Xref -> X*} ->

(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) ->

(coh : T ≡ T* ○ f) ->

(p : (e : Xref) -> Y* (f (repX e)) -> Y* (repX* e)) ->

ArgA Xref G X Y T repX -> ArgA Xref G X* Y* T* repX*

ArgAfun (nilA _) f g coh p _ = _

ArgAfun (nonind K G) f g coh p (k , y)

= (k , ArgAfun (G k) f g coh p y)

ArgAfun {Xref} (A-ind K G) {T = T} {repX* = repX*} f g coh p (j , y)

= (f ○ j , subst (ń z -> ArgA (Xref + K) z _ _ _ [repX* , f ○ j])

(cong (ń w -> G (w ○ j)) coh)

(ArgAfun (G (T ○ j)) f g coh [p , (ń k -> id)] y))

ArgAfun {Xref} (B-ind K h G) {repX = repX} f g coh p (j , y)

= ((ń k -> p (h k) (g (repX (h k)) (j k))) , ArgAfun G f g coh p y)

ArgAfun’ : (GA : SPA’) ->

{X : Set}{Y : X -> Set}{T : X -> D} ->

{X* : Set}{Y* : X* -> Set}{T* : X* -> D} ->

(f : X -> X*)(g : (a : X) -> Y a -> Y* (f a)) ->

(coh : T ≡ T* ○ f) ->

ArgA’ GA X Y T -> ArgA’ GA X* Y* T*

ArgAfun’ GA f g coh = ArgAfun GA f g coh �-elim

{- "recursive part" -}

FunA : {Xref : Set} ->

(GA : SPA Xref) ->

{X : Set}{Y : X -> Set} ->

{T : X -> D} ->

{repX : Xref -> X} ->

ArgA Xref GA X Y T repX -> D

FunA (nilA o) _ = o

FunA (nonind K G) (k , x) = FunA (G k) x

FunA (A-ind K G) {T = T} (j , x) = FunA (G (T ○ j)) x

FunA (B-ind K h G) (j , x) = FunA G x

FunA’ : (GA : SPA’) -> (X : Set) -> (Y : X -> Set) -> (T : X -> D) ->

ArgA’ GA X Y T -> D

FunA’ GA X Y T = FunA GA {X} {Y} {T}

FunA-coh : {Xref : Set} ->

(GA : SPA Xref) ->

{X : Set}{Y : X -> Set}{T : X -> D}

{repX : Xref -> X} ->

{X* : Set}{Y* : X* -> Set}{T* : X* -> D} ->

{repX* : Xref -> X*} ->

{f : X -> X*}{g : (a : X) -> Y a -> Y* (f a)} ->

{coh : T ≡ T* ○ f} ->

{p : (e : Xref) -> Y* (f (repX e)) -> Y* (repX* e)} ->

192

A.2. Axiomatisations

(x : ArgA Xref GA X Y T repX) ->

FunA GA x ≡ FunA GA (ArgAfun GA {T* = T*} f g coh p x)

FunA-coh (nilA o) x = refl

FunA-coh (nonind K G) (k , x) = FunA-coh (G k) x

FunA-coh {Xref} (A-ind K G) {T = T} {repX = repX} {Y* = Y*} {T*}

{repX* = repX*} {f = f} {g = g} {coh = coh} {p = p} (j , x)

= begin

FunA (A-ind K G) (j , x)

≡⟨ refl ⟩
FunA (G (T ○ j)) x

≡⟨ FunA-coh (G (T ○ j)) x ⟩
FunA (G (T ○ j)) (ArgAfun (G (T ○ j)) f g coh [p , (ń k -> id)] x)

≡⟨ cong2’ (ń a b -> FunA a b) (cong (ń w -> G (w ○ j)) coh) refl ⟩
FunA (G (T* ○ f ○ j))

(subst (ń z -> ArgA (Xref + K) z _ _ _ [repX* , (f ○ j)])

(cong (ń w -> G (w ○ j)) coh)

(ArgAfun (G (T ○ j)) f g coh [p , (ń k -> id)] x))

≡⟨ refl ⟩
FunA (A-ind K G)

(ArgAfun (A-ind K G) {Y* = Y*} {T* = T*} f g coh p (j , x))

∎
FunA-coh (B-ind K h G) (j , x) = FunA-coh G x

mutual

data Aterm (G : SPA’) (Xref : Set)(Yref : Set)

(TrefA : Xref -> D)(TrefB : Yref -> D) : {i : Size} -> Set where

aref : ∀ {i} -> Xref -> Aterm G Xref Yref TrefA TrefB {↑ i}

bref : ∀ {i} -> Yref -> Aterm G Xref Yref TrefA TrefB {↑ i}

arg : ∀ {i} -> ArgA’ G (Aterm G Xref Yref TrefA TrefB {i})

(Bterm G) (Tterm G)
-> Aterm G Xref Yref TrefA TrefB {↑ i}

Bterm : ∀ {i} -> (G : SPA’) ->

{Xref Yref : Set} ->

{TrefA : Xref -> D} -> {TrefB : Yref -> D} ->

Aterm G Xref Yref TrefA TrefB {i} -> Set

Bterm G (aref y) = �
Bterm G (bref y) = ⊺
Bterm G (arg y) = �

Tterm : ∀ {i} -> (G : SPA’) ->

{Xref Yref : Set} ->

{TrefA : Xref -> D} -> {TrefB : Yref -> D} ->

Aterm G Xref Yref TrefA TrefB {i} -> D

Tterm GA {TrefA = TrefA} (aref y) = TrefA y

193

A. Agda formalisations

Tterm GA {TrefB = TrefB} (bref y) = TrefB y

Tterm GA (arg x) = FunA’ GA _ _ _ x

mutual

repAbar : ∀ {i} ->(G : SPA’) ->

{Xref : Set}{Yref : Set} ->

{TrefA : Xref -> D}{TrefB : Yref -> D} ->

{X : Set}{Y : X -> Set}{T : X -> D} ->

(introA : ArgA’ G X Y T -> X) ->

(repX : Xref -> X) ->

(repindex : Yref -> X) ->

(repY : (b : Yref) -> Y (repindex b)) ->

{T-sane : (x : ArgA’ G X Y T) -> T (introA x) ≡ FunA G x} ->

{TrefA-sane : (x : Xref) -> TrefA x ≡ T (repX x)} ->

{TrefB-sane : (x : Yref) -> TrefB x ≡ T (repindex x)} ->

Aterm G Xref Yref TrefA TrefB {i}

-> X

repAbar G introA repX repindex repY (aref y) = repX y

repAbar G introA repX repindex repY (bref y) = repindex y

repAbar G {T = T} introA repX repindex repY {T-sane} {TrefA-sane} {TrefB-sane} (arg {i} y)

= introA

(ArgAfun’ G
(repAbar {i} G introA repX repindex repY)

(repBbar G introA repX repindex repY)

(ext (coh G {T = T} T-sane TrefA-sane TrefB-sane))

y)

repBbar : ∀ {i} ->(G : SPA’) ->

{Xref : Set}{Yref : Set} ->

{TrefA : Xref -> D}{TrefB : Yref -> D} ->

{X : Set}{Y : X -> Set}{T : X -> D} ->

(introA : ArgA’ G X Y T -> X) ->

(repX : Xref -> X) ->

(repindex : Yref -> X) ->

(repY : (b : Yref) -> Y (repindex b)) ->

{T-sane : (x : ArgA’ G X Y T) -> T (introA x) ≡ FunA G x} ->

{TrefA-sane : (x : Xref) -> TrefA x ≡ T (repX x)} ->

{TrefB-sane : (x : Yref) -> TrefB x ≡ T (repindex x)} ->

(t : Aterm G Xref Yref TrefA TrefB {i}) ->

Bterm G t -> Y (repAbar G introA repX repindex repY

{T-sane} {TrefA-sane} {TrefB-sane} t)

repBbar G introA repX repindex repY (aref a) = �-elim
repBbar G introA repX repindex repY (bref b) = ń _ -> repY b

repBbar G introA repX repindex repY (arg y) = �-elim

194

A.2. Axiomatisations

coh : ∀ {i} ->(G : SPA’) ->

{Xref : Set}{Yref : Set} ->

{TrefA : Xref -> D}{TrefB : Yref -> D} ->

{X : Set}{Y : X -> Set}{T : X -> D} ->

{introA : ArgA’ G X Y T -> X} ->

{repX : Xref -> X} ->

{repindex : Yref -> X} ->

{repY : (b : Yref) -> Y (repindex b)} ->

(T-sane : (x : ArgA’ G X Y T) -> T (introA x) ≡ FunA G x) ->

(TrefA-sane : (x : Xref) -> TrefA x ≡ T (repX x)) ->

(TrefB-sane : (x : Yref) -> TrefB x ≡ T (repindex x)) ->

(x : Aterm G Xref Yref TrefA TrefB {i}) ->

Tterm G x ≡ T (repAbar G introA repX repindex repY

{T-sane} {TrefA-sane} {TrefB-sane} x)

coh G _ TrefA-sane _ (aref x) = TrefA-sane x

coh G _ _ TrefB-sane (bref x) = TrefB-sane x

coh G {T = T} {introA} {repX} {repIndex} {repY} T-sane _ _(arg w)

= begin

Tterm G (arg w)

≡⟨ refl ⟩
FunA G w

≡⟨ FunA-coh G w ⟩
FunA G (ArgAfun’ G _ _ _ w)

≡⟨ sym (T-sane (ArgAfun’ G _ _ _ w)) ⟩
T (introA (ArgAfun’ G _ _ _ w))

≡⟨ refl ⟩
T (repAbar G introA repX repIndex repY (arg w))

∎

data SPB (Xref : Set)(Yref : Set)

(TrefA : Xref -> D)(TrefB : Yref -> D)(GA : SPA’) : Set1 where

nilB : Aterm GA Xref Yref TrefA TrefB -> SPB Xref Yref TrefA TrefB GA
nonind : (K : Set) -> (G : K -> SPB Xref Yref TrefA TrefB GA)

-> SPB Xref Yref TrefA TrefB GA
A-ind : (K : Set) ->

(G : (t : K -> D) -> SPB (Xref + K) Yref [TrefA , t] TrefB GA)
-> SPB Xref Yref TrefA TrefB GA

B-ind : (K : Set) -> (h : (k : K) -> Aterm GA Xref Yref TrefA TrefB) ->

(G : (t : K -> D) -> SPB Xref (Yref + K) TrefA [TrefB , t] GA)
-> SPB Xref Yref TrefA TrefB GA

SPB’ : (GA : SPA’) -> Set1

SPB’ = SPB � � �-elim �-elim

ArgB : (GA : SPA’) ->

(Xref : Set)(Yref : Set) ->

{TrefA : Xref -> D}{TrefB : Yref -> D} ->

195

A. Agda formalisations

(X : Set)(Y : X -> Set)(T : X -> D)(inA : ArgA’ GA X Y T -> X) ->

(repX : Xref -> X) ->

(repIndex : Yref -> X) ->

(repY : (x : Yref) -> Y (repIndex x)) ->

(GB : SPB Xref Yref TrefA TrefB GA) ->

(T-sane : (x : ArgA’ GA X Y T) -> T (inA x) ≡ FunA GA x) ->

(TrefA-sane : (x : Xref) -> TrefA x ≡ T (repX x)) ->

(TrefB-sane : (x : Yref) -> TrefB x ≡ T (repIndex x))

-> Set

ArgB GA Xref Yref X Y T inA repX repIndex repY (nilB a)

T-sane TrefA-sane TrefB-sane = ⊺
ArgB GA Xref Yref X Y T inA repX repIndex repY (nonind K G)

T-sane TrefA-sane TrefB-sane

= Σ[e ∈ K] ArgB GA Xref Yref X Y T inA repX repIndex repY (G e)

T-sane TrefA-sane TrefB-sane

ArgB GA Xref Yref X Y T inA repX repIndex repY (A-ind K G)
T-sane TrefA-sane TrefB-sane

= Σ[j ∈ (K -> X)]

ArgB GA (Xref + K) Yref X Y T inA [repX , j] repIndex repY (G (T ○ j))

T-sane [TrefA-sane , (ń k -> refl)] TrefB-sane

ArgB GA Xref Yref X Y T inA repX repIndex repY (B-ind K h G)
T-sane TrefA-sane TrefB-sane

= Σ[j ∈ ((e : K) -> Y (repAbar GA inA repX repIndex repY (h e)))]

ArgB GA Xref (Yref + K) X Y T inA repX

[repIndex , ((repAbar GA inA repX repIndex repY {T-sane}) ○ h)]

[repY , j]

(G (T ○ (repAbar GA inA repX repIndex repY

{T-sane} {TrefA-sane} {TrefB-sane}) ○ h))

T-sane TrefA-sane

[TrefB-sane , (ń k -> refl)]

ArgB’ : (GA : SPA’) ->

(GB : SPB’ GA) ->

(X : Set)(Y : X -> Set)(T : X -> D)(inA : ArgA’ GA X Y T -> X) ->

(T-sane : (x : ArgA’ GA X Y T) -> T (inA x) ≡ FunA GA x) -> Set

ArgB’ GA GB X Y T inA T-sane

= ArgB GA � � X Y T inA �-elim �-elim �-elim GB T-sane �-elim �-elim

Index : {GA : SPA’} ->

{Xref : Set}{Yref : Set}

{TrefA : Xref -> D}{TrefB : Yref -> D} ->

{X : Set}{Y : X -> Set}{T : X -> D}{inA : ArgA’ GA X Y T -> X} ->

{repX : Xref -> X} ->

{repIndex : Yref -> X} ->

{repY : (x : Yref) -> Y (repIndex x)} ->

196

A.2. Axiomatisations

(GB : SPB Xref Yref TrefA TrefB GA) ->

{T-sane : (x : ArgA’ GA X Y T) -> T (inA x) ≡ FunA GA x} ->

{TrefA-sane : (x : Xref) -> TrefA x ≡ T (repX x)} ->

{TrefB-sane : (x : Yref) -> TrefB x ≡ T (repIndex x)} ->

ArgB GA Xref Yref X Y T inA repX repIndex repY GB
T-sane TrefA-sane TrefB-sane -> X

Index {GA} {inA = inA} {repX} {repIndex} {repY} (nilB a)

{T-sane = T-sane} {TrefA-sane} {TrefB-sane} _

= repAbar GA inA repX repIndex repY

{T-sane = T-sane} {TrefA-sane} {TrefB-sane} a

Index (nonind K G)(k , y) = Index (G k) y

Index {T = T} (A-ind K G) (j , y) = Index (G (T ○ j)) y

Index {GA} {T = T} {inA} {repX} {repIndex} {repY} (B-ind K h G) (j , y)

= Index (G (T ○ (repAbar GA inA repX repIndex repY) ○ h)) y

mutual

data A (GA : SPA’)(GB : SPB’ GA) : Set where

introA : ArgA’ GA (A GA GB) (B GA GB) (T GA GB) -> (A GA GB)

{-# NO_TERMINATION_CHECK #-}

T : (GA : SPA’)(GB : SPB’ GA) -> A GA GB -> D

T GA GB (introA x) = FunA’ GA (A GA GB) (B GA GB) (T GA GB) x

data B (GA : SPA’)(GB : SPB’ GA) : (A GA GB) -> Set where

introB : (b : ArgB’ GA GB (A GA GB) (B GA GB) (T GA GB)
introA (ń x -> refl))

-> (B GA GB) (Index GB b)

A.2.4.1 Examples

++ : {Xref : Set} -> SPA Xref -> SPA Xref -> SPA Xref

G ++ ψ = nonind N2 (ń { tt → G ; ff → ψ })

+++ : ∀ {Xref Yref TrefA TrefB GA} -> SPB Xref Yref TrefA TrefB GA -> SPB Xref Yref TrefA TrefB GA -> SPB Xref Yref TrefA TrefB GA
G +++ ψ = nonind N2 (ń { tt → G ; ff → ψ })

infixr 40 _++_

infixr 40 _+++_

module examples-indind-as-IIR where

open IIR ⊺

---------------------Ctxt and Types------------------

GCtxt : SPA’

197

A. Agda formalisations

GCtxt = nilA _ ++ A-ind ⊺ (ń _ → B-ind ⊺ (ń _ → inr _) (nilA _))

GTy : SPB’ GCtxt
GTy = A-ind ⊺ (ń _ → nilB (aref (inr _)))

+++ A-ind ⊺
(ń _ → B-ind

⊺
(ń _ → aref (inr _))

(ń _ → B-ind

⊺
(ń _ → arg (ff , ((ń _ → bref (inr _)) , ((ń _ → _) , _))))

(ń _ → nilB (aref (inr _)))))

Ctxt : Set

Ctxt = A GCtxt GTy

Ty : Ctxt -> Set

Ty = B GCtxt GTy

E : Ctxt

E = introA (tt , _)

cons : (Γ : Ctxt) -> Ty Γ -> Ctxt

cons Γ σ = introA ((ff , (ń _ → Γ) , (ń _ → σ) , _))

Ì : {Γ : Ctxt} -> Ty Γ
Ì {Γ} = introB (tt , (ń _ → Γ) , _)

Π : (Γ : Ctxt) -> (A : Ty Γ) -> (B : Ty (cons Γ A)) -> Ty Γ
Π Γ A B = introB (ff , ((ń _ → Γ) , ((ń _ → A) , ((ń _ → B) , _))))

---------------------Natural numbers----------------

GNat : SPA’

GNat = nilA _ ++ A-ind ⊺ (ń _ → nilA _)

GDummy : SPB’ GNat
GDummy = A-ind ⊺ (ń _ → nilB (aref (inr _)))

N : Set

N = A GNat GDummy

Nzero : N
Nzero = introA (tt , _)

Nsuc : N -> N
Nsuc n = introA (ff , ((ń _ → n) , _))

198

A.2. Axiomatisations

---------------------Finite sets---------------------

GN’ : SPA’

GN’ = nonind N (ń n → nilA _)

GFin : SPB’ GN’
GFin = nonind N (ń n → nilB (arg (Nsuc n , _)))

+++ nonind N (ń n → B-ind ⊺ (ń _ → arg (n , _))

(ń _ → nilB (arg ((Nsuc n) , _))))

N’ : Set

N’ = A GN’ GFin

i : N -> N’
i n = introA (n , _)

Fin : N -> Set

Fin n = B GN’ GFin (i n)

fz : (n : N) -> Fin (Nsuc n)

fz n = introB (tt , (n , _))

fsuc : (n : N) -> Fin n -> Fin (Nsuc n)

fsuc n m = introB (ff , n , ((ń _ → m) , _))

module examples-indrec-as-IIR where

open IIR Set

GNΣ : SPA’

GNΣ = nilA examples-indind-as-IIR.N
++ A-ind ⊺ (ń X → A-ind (X _) (ń Y → nilA (Σ (X _) Y)))

GDummy : SPB’ GNΣ
GDummy = A-ind ⊺ (ń _ → nilB (aref (inr _)))

UNΣ : Set

UNΣ = A GNΣ GDummy

TNΣ : UNΣ -> Set

TNΣ = T GNΣ GDummy

n : UNΣ
n = introA (tt , _)

sigma : (a : UNΣ) -> (b : TNΣ a -> UNΣ) -> UNΣ
sigma a b = introA (ff , (ń _ → a) , b , _)

199

A. Agda formalisations

private

T-n : TNΣ n ≡ examples-indind-as-IIR.N
T-n = refl

T-sigma : ∀ {a b} -> TNΣ (sigma a b) ≡ Σ (TNΣ a) (TNΣ ○ b)

T-sigma = refl

A.2.4.2 Embedding inductive-inductive and inductive-recursive definitions

module IItoIIR where

open module indindrec = IIR ⊺

open indind

ΨA : {Xref : Set} -> indind.SPA Xref -> indindrec.SPA Xref

ΨA nilA = nilA _

ΨA (nonind K G) = nonind K (ń x → ΨA (G x))

ΨA (A-ind K G) = A-ind K (ń _ → ΨA G)
ΨA (B-ind K h G) = B-ind K h (ΨA G)

ΨA-correct : {Aref : Set} ->

(GA : indind.SPA Aref) ->

{A : Set}{B : A → Set} ->

{repA : Aref → A} ->

indind.ArgA Aref GA A B repA

≡ indindrec.ArgA Aref (ΨA GA) A B _ repA

ΨA-correct nilA = refl

ΨA-correct (nonind K G) = cong (ń z → Σ _ z) (ext (ń k → ΨA-correct (G k)))

ΨA-correct (A-ind K G) = cong (ń z → Σ _ z) (ext (ń j → ΨA-correct G))
ΨA-correct (B-ind K h G) = cong (ń z → Σ _ z) (ext (ń j → ΨA-correct G))

ΨArgA : (GA : indind.SPA’) ->

{A : Set}{B : A → Set} ->

{A* : Set}{B* : A* → Set} ->

(f : A -> A*)(g : (x : A) -> B x -> B* (f x)) ->

indind.ArgA’ GA A B -> indindrec.ArgA’ (ΨA GA) A* B* _

ΨArgA GA f g = indindrec.ArgAfun’ (ΨA GA) f g refl

○ (subst id (ΨA-correct GA))

ΨArgA-inv : (GA : indind.SPA’) ->

{A : Set}{B : A → Set} ->

indindrec.ArgA’ (ΨA GA) A B _ -> indind.ArgA’ GA A B

ΨArgA-inv GA x = (subst id (sym (ΨA-correct GA)) x)

mutual

ΨATerm : ∀ {Xref Yref GA i} ->

indind.Aterm GA Xref Yref {i}

200

A.2. Axiomatisations

-> indindrec.Aterm (ΨA GA) Xref Yref _ _ {i}

ΨATerm (aref x) = aref x

ΨATerm (bref x) = bref x

ΨATerm {GA = GA} (arg x) = arg (ΨArgA GA ΨATerm ΨBTerm x)

ΨBTerm : ∀ {Xref Yref GA i} -> (x : indind.Aterm GA Xref Yref {i}) ->

indind.Bterm GA x -> indindrec.Bterm (ΨA GA) (ΨATerm x)

ΨBTerm (aref x) y = y

ΨBTerm (bref x) y = y

ΨBTerm (arg x) y = y

ΨB : {Xref Yref : Set}{GA : indind.SPA’} ->

indind.SPB Xref Yref GA -> indindrec.SPB Xref Yref _ _ (ΨA GA)
ΨB (nilB a) = nilB (ΨATerm a)

ΨB (nonind K G) = nonind K (ń z → ΨB (G z))

ΨB (A-ind K G) = A-ind K (ń _ → ΨB G)
ΨB (B-ind K h G) = B-ind K (ΨATerm ○ h) (ń _ → ΨB G)

module IRtoIIR (D : Set1) where

open IIR D

open IR D

Φ : ∀ {Xref} -> OP -> SPA Xref

Φ (Ì d) = nilA d

Φ (σ A f) = nonind A (ń z → Φ (f z))

Φ (δ A F) = A-ind A (ń z → Φ (F z))

Φ-correctU : {U : Set}{B : U -> Set}{T : U -> D} ->

{Xref : Set}{repA : Xref -> U} ->

(G : OP) -> J G K0 U T ≡ ArgA Xref (Φ G) U B T repA

Φ-correctU (Ì d) = refl

Φ-correctU (σ A f) = cong (ń z → Σ A z) (ext (ń a → Φ-correctU (f a)))

Φ-correctU {U = U} {T = T} (δ A F) = cong (ń z → Σ (A → U) z)

(ext (ń g → Φ-correctU (F (T ○ g))))

ΦU : ∀ {Xref U T B repA} -> (G : OP) -> J G K0 U T

-> ArgA Xref (Φ G) U B T repA

ΦU (Ì d) _ = _

ΦU (σ A f) (a , x) = (a , ΦU (f a) x)

ΦU {T = T} (δ A F) (g , x) = (g , ΦU (F (T ○ g)) x)

Φ-correctT : {U : Set}{B : U -> Set}{T : U -> D} ->

{Xref : Set}{repX : Xref -> U} ->

(G : OP) -> (x : J G K0 U T) ->

J G K1 U T x ≡ FunA (Φ G) {Y = B} {repX = repX} (ΦU G x)

Φ-correctT (Ì d) _ = refl

201

A. Agda formalisations

Φ-correctT (σ A f) (a , x) = Φ-correctT (f a) x

Φ-correctT {T = T} (δ A F) (g , x) = Φ-correctT (F (T ○ g)) x

202

Bibliography

Michael Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003. (cited
on p. 97).

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In
Foundations of Software Science and Computation Structures, pages 23–38, 2003. (cited
on pp. 97, 104).

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested inductive
types using W-types. In Automata, Languages and Programming, 31st International
Colloqium (ICALP), pages 59 – 71, 2004. (cited on pp. 5, 97).

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly
positive types. Theoretical Computer Science, 342(1):3 – 27, 2005. (cited on pp. 5, 97).

Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion.
Journal of Functional Programming, 12(1):1–41, 2002. (cited on p. 156).

Peter Aczel. An introduction to inductive definitions. In Handbook of Mathematical Logic,
pages 739–782. Elsevier, 1977. (cited on pp. 8, 96).

Peter Aczel. The type theoretic interpretation of constructive set theory. In Logic
Colloquium ’77. North-Holland, 1978. (cited on p. 151).

Peter Aczel. Frege structures and the notions of proposition, truth and set. In Jon
Barwise, H. Jerome Keisler, and Kenneth Kunen, editors, The Kleene Symposium,
volume 101 of Studies in Logic and the Foundations of Mathematics, pages 31 – 59. Elsevier,
1980. (cited on p. 5).

Peter Aczel. On relating type theories and set theories. Lecture Notes In Computer Science,
1657:1–18, 1999. (cited on p. 89).

Peter Aczel and Michael Rathjen. Notes on Constructive Set Theory. Draft, 2010. (cited on
p. 117).

203

Bibliography

Jiřı́ Adámek. Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolinae, 15(1074):589–602, 1974. (cited on p. 91).

Jiri Adámek, Stefan Milius, and Lawrence Moss. Initial algebras and terminal coalgebras:
a survey. Draft, June 2010. (cited on pp. 92, 136).

Thorsten Altenkirch. Extensional equality in intensional type theory. In Logic in
Computer Science, pages 412 – 420, 1999. (cited on p. 28).

Thorsten Altenkirch and Peter Morris. Indexed containers. In Logic In Computer Science,
pages 277 –285, 2009. (cited on pp. 5, 97).

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality,
now! In PLPV ’07: Proceedings of the 2007 workshop on Programming languages meets
program verification, pages 57 – 68. ACM, 2007. (cited on p. 25).

Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton Setzer. A
categorical semantics for inductive-inductive definitions. In Andrea Corradini, Bartek
Klin, and Corina Cirstea, editors, Conference on Algebra and Coalgebra in Computer
Science, volume 6859 of Lecture Notes in Computer Science, pages 70 – 84. Springer, 2011.
(cited on pp. 11, 59).

Roland Backhouse. On the meaning and construction of the rules in Martin-Löf’s
theory of types. In A. Avron, R. Harper, F. Honsell, I. Mason, and G. Plotkin, editors,
Proceedings of the Workshop on general logic, Edinburgh, February, 1987, volume ECS-
LFCS-88-52, 1988. (cited on p. 4).

Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman. Do-it-yourself
type theory. Formal Aspects of Computing, 1(1):19–84, 1989. (cited on p. 4).

Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 1984. (cited on p. 15).

Jean Bénabou. Fibered categories and the foundations of naive category theory. The
Journal of Symbolic Logic, 50(1):10 – 37, 1985. (cited on p. 77).

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic Journal of Computing, 10:265–269, 2003. (cited
on p. 5).

Errett Bishop. Foundations of constructive analysis. McGraw-Hill, 1967. (cited on p. 3).

Errett Bishop and Douglas Bridges. Constructive analysis. Berlin, 1985. (cited on p. 153).

Rodney Burstall. Proving properties of programs by structural induction. The Computer
Journal, 12(1):41–48, 1969. (cited on p. 4).

Venanzio Capretta. Wander types : A formalization of coinduction-recursion. Progress
in Informatics, (10):47–64, 2013. (cited on p. 173).

204

Bibliography

Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Science, 5(04):441 – 459, 1995. (cited
on p. 161).

John Cartmell. Generalised algebraic theories and contextual categories. PhD thesis, Oxford
University, 1978. (cited on p. 66).

James Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer
Science, 228:21–36, 2009. (cited on pp. 31, 136).

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle
art of levitation. In ICFP, volume 45, pages 3–14. ACM, 2010. (cited on pp. 5, 173).

Pierre Clairambault. From categories with families to locally cartesian closed categories.
Technical report, ENS Lyon, 2006. (cited on p. 71).

Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed
categories and Martin-Löf type theories. In TLCA, 2011. (cited on pp. 71, 72, 74, 76,
77).

John Conway. On numbers and games. AK Peters, 2001. (cited on pp. 147, 149, 156, 157,
159).

Thierry Coquand. Pattern matching with dependent types. In Proceedings of the Workshop
on Types for Proofs and Programs, pages 85–92, 1992. (cited on pp. 29, 156).

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
Computation, 76:95 – 120, 1988. (cited on p. 5).

Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In Per
Martin-Löf and Grigori Mints, editors, COLOG-88, volume 417 of Lecture Notes in
Computer Science, pages 50–66. Springer Berlin Heidelberg, 1990. (cited on p. 5).

Haskell Curry. Functionality in combinatory logic. In Proceedings of the National Academy
of Sciences, pages 584 – 590, 1934. (cited on p. 22).

Haskell Curry and Robert Feys. Combinatory Logic Vol. I. Amsterdam: North-Holland,
1958. (cited on p. 22).

Pierre-Evariste Dagand and Conor McBride. Elaborating inductive definitions. In
Journées Francophones des Langages Applicatifs, 2013. (cited on pp. 29, 58).

Nils Anders Danielsson. A formalisation of a dependently typed language as an
inductive-recursive family. Lecture Notes in Computer Science, 4502:93–109, 2007. (cited
on pp. 31, 119, 120, 136, 138).

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies: A tool
for automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34:381 – 392, 1972. (cited on p. 14).

205

Bibliography

Nicolaas Govert de Bruijn. Telescopic mappings in typed lambda calculus. Information
and Computation, 91:189 – 204, 1991. (cited on p. 14).

Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semantics. In Logical Frameworks, pages 280 – 206. Cambridge University
Press, 1991. (cited on p. 5).

Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994. (cited
on p. 5).

Peter Dybjer. Internal type theory. Lecture Notes in Computer Science, 1158:120–134, 1996.
(cited on pp. 66, 70, 71).

Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s
type theory. Theoretical Computer Science, 176(1-2):329–335, 1997. (cited on pp. 5, 97,
100).

Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in
type theory. Journal of Symbolic Logic, 65(2):525–549, 2000. (cited on pp. 5, 32).

Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions.
In Typed lambda calculi and applications: 4th international conference, TLCA’99, L’Aquila,
Italy, April 7-9, 1999: proceedings, pages 129–146. Springer Verlag, 1999. (cited on pp. 5,
35, 36, 89, 94, 119, 131, 132, 133).

Peter Dybjer and Anton Setzer. Induction–recursion and initial algebras. Annals of Pure
and Applied Logic, 124(1-3):1–47, 2003. (cited on pp. 5, 39, 60, 69, 87).

Peter Dybjer and Anton Setzer. Indexed induction–recursion. Journal of logic and algebraic
programming, 66(1):1–49, 2006. (cited on pp. 5, 38, 89, 144).

Linus Ek, Ola Holmström, and Stevan Andjelkovic. Formalizing Arne Andersson trees
and left-leaning Red-Black trees in Agda. Bachelor thesis, Chalmers Institute of
Technology, 2009. (cited on p. 38).

Clement Fumex. Induction and Coinduction schemes in Category Theory. PhD thesis,
University of Strathclyde, 2012. (cited on p. 87).

Richard Garner. On the strength of dependent products in the type theory of Martin-Löf.
Annals of Pure and Applied Logic, 160(1):1–12, 2009. (cited on p. 20).

Herman Geuvers. Induction is not derivable in second order dependent type theory. In
Typed lambda calculi and applications: 5th international conference, TLCA 2001, Kraków,
Poland, May 2-5, 2001: proceedings, pages 166–181. Springer, 2001. (cited on p. 5).

Neil Ghani and Peter Hancock. Containers, monads and induction recursion. To appear
in MSCS, 2012. (cited on p. 151).

206

Bibliography

Neil Ghani, Patricia Johann, and Clement Fumex. Fibrational induction rules for initial
algebras. In Computer Science Logic, pages 336–350. Springer, 2010. (cited on p. 87).

Neil Ghani, Patricia Johann, and Clement Fumex. Indexed induction and coinduction,
fibrationally. In Andrea Corradini, Bartek Klin, and Corina Cirstea, editors, Conference
on Algebras and Coalgebra in Computer Science, volume 6859 of Lecture Notes in Computer
Science. Springer, Heidelberg, 2011. (cited on p. 87).

Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. Positive inductive-
recursive definitions. In Reiko Heckel and Stefan Milius, editors, CALCO 2013,
volume 8089 of Lecture Notes in Computer Science, pages 19 – 33, 2013a. (cited on pp. 12,
147).

Neil Ghani, Lorenzo Malatesta, Fredrik Nordvall Forsberg, and Anton Setzer. Fibred
data types. In Logic in Computer Science, pages 243 – 252, 2013b. (cited on pp. 8, 173).

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge University
Press, 1989. ISBN 0-521-37181-3. (cited on p. 23).

Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, 1994. (cited on p. 21).

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern
matching, volume 4060 of Lecture Notes in Computer Science, pages 521–540. Springer,
2006. (cited on pp. 30, 157).

Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Initial
algebra semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977.
ISSN 0004-5411. (cited on pp. 39, 59).

Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of Edin-
burgh, 1987. (cited on p. 61).

Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten Altenkirch.
Small induction recursion, indexed containers and dependent polynomials are equiv-
alent. In Masahito Hasegawa, editor, Typed Lambda Calculi and Applications, volume
7941 of Lecture Notes in Computer Science, pages 156 – 172. Springer, 2013. (cited on
pp. 162, 163).

Ronald Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in
intuitionistic formal systems. The Journal of Symbolic Logic, 25(1):27 – 32, 1960. (cited
on p. 28).

Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational
setting. Information and Computation, 145(2):107 – 152, 1998. (cited on pp. 69, 73, 87).

Martin Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Computer Science Logic, pages 427–441. Springer, 1994. (cited on p. 77).

207

Bibliography

Martin Hofmann. Syntax and semantics of dependent types. In Andrew Pitts and
Peter Dybjer, editors, Semantics and Logics of Computation, pages 79 – 130. Cambridge
University Press, 1997. (cited on pp. 66, 74).

Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory.
In G. Sambin and J. Smith, editors, Twenty five years of constructive type theory, pages
83–111, Oxford, 1998. Oxford University Press. (cited on p. 24).

William Howard. The formulae-as-types notion of construction. Published in in Seldin,
J., Hindley, R.: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, 1969. (cited on p. 22).

Gérard Huet and Amokrane Saı̈bi. Constructive category theory. In Proceedings of the
Joint CLICS-TYPES Workshop on Categories and Type Theory, Göteborg, 1998. (cited on
p. 30).

IBM Applied Science Division. Specifications for the IBM mathematical formula trans-
lating system, FORTRAN. Technical report, International Business Machines Corpo-
ration, 1954. (cited on p. 2).

Bart Jacobs. Comprehension categories and the semantics of type dependency. Theoreti-
cal Computer Science, 107(2):169 – 207, 1993. (cited on p. 66).

Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. North Holland, Elsevier, 1999. (cited on p. 87).

Reinhard Kahle and Anton Setzer. An extended predicative definition of the Mahlo
universe. In Ralf Schindler, editor, Ways of Proof Theory. Festschrift on the occasion of
Wolfram Pohler’s retirement, Ontos Series in Mathematical Logic. Ontos Verlag, 2010.
(cited on p. 173).

Gregory Maxwell Kelly. Elementary observations on 2-categorical limits. Bulletin of the
Australian Mathematical Society, 39(02):301–317, 1989. (cited on p. 61).

Stephen Cole Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. Wolters-
Noordhoff, 1952. (cited on p. 9).

Donald Erwin Knuth. Surreal Numbers. Addison Wesley, 1974. (cited on p. 147).

Joachim Lambek. Subequalizers. Canadian Mathematical Bulletin, 13:337 – 349, 1970.
(cited on p. 61).

Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Number 11
in International Series of Monographs on Computer Science. Oxford University press,
1994. (cited on p. 21).

Zhaohui Luo. Notes on universes in type theory. Lecture notes for a talk at Institute
for Advanced Study, Princeton (URL: http://www.cs.rhul.ac.uk/home/zhaohui/
universes.pdf), 2012. (cited on p. 16).

208

http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf

Bibliography

Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping: theory and implemen-
tation. Information and Computation, 223:18 – 42, 2012. (cited on p. 16).

Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998. (cited on
pp. 30, 79).

José Pedro Magalhães. Less Is More: Generic Programming Theory and Practice. PhD thesis,
Universiteit Utrecht, 2012. (cited on p. 5).

Lorenzo Malatesta. Investigations into Inductive-Recursive Definitions. PhD thesis, Univer-
sity of Strathclyde, 2014. Forthcoming. (cited on p. 147).

Lionel Mamane. Surreal numbers in Coq. In Jean-Christophe Filliâtre, Christine Paulin-
Mohring, and Benjamin Werner, editors, Types for Proofs and Programs: International
Workshop TYPES 2004, volume 3839 of Lecture Notes in Computer Science, pages 170 –
185. Springer, 2006. (cited on pp. 148, 153, 159).

Simon Marlow. Haskell 2010 language report, 2010. URL http://www.haskell.org/

onlinereport/haskell2010/. (cited on p. 2).

Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions.
In Jan Erik Fenstad, editor, Proceedings of the 2nd Scandinavian logic symposium, pages
179 – 216, 1971. (cited on p. 4).

Per Martin-Löf. An intuitionistic theory of types. Published in Twenty-Five Years of
Constructive Type Theory, 1972. (cited on pp. 2, 3, 4, 5, 22, 38).

Per Martin-Löf. Constructive mathematics and computer programming. Studies in Logic
and the Foundations of Mathematics, 104:153–175, 1982. (cited on pp. 2, 3, 4).

Per Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, 1984. (cited on pp. 2, 4, 16).

Nax Paul Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell University,
1987. (cited on p. 5).

Kenji Miyamoto, Fredrik Nordvall Forsberg, and Helmut Schwichtenberg. Program
extraction from nested definitions. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, Interactive Theorem Proving, volume 7998 of Lecture Notes in
Computer Science, pages 370 – 385. Springer, 2013. (cited on p. 172).

Peter Morris. Constructing Universes for Generic Programming. PhD thesis, University of
Nottingham, 2007. (cited on p. 5).

Peter Morris, Thorsten Altenkirch, and Neil Ghani. A universe of strictly positive
families. International Journal of Foundations of Computer Science, 20(1):83–107, 2009.
(cited on p. 172).

Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s type
theory: an introduction. Oxford University Press, 1990. (cited on pp. 2, 13, 25).

209

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

Bibliography

Bengt Nordström, Kent Petersson, and Jan Smith. Martin-Löf’s type theory. In Handbook
of Logic in Computer Science: Logic and algebraic methods. Oxford University Press, 2001.
(cited on p. 2).

Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive definitions. In Anuj
Dawar and Helmut Veith, editors, Computer Science Logic, volume 6247 of Lecture
Notes in Computer Science, pages 454–468. Springer, 2010. (cited on pp. 11, 31, 35, 89).

Fredrik Nordvall Forsberg and Anton Setzer. A finite axiomatisation of inductive-
inductive definitions. In Ulrich Berger, Hannes Diener, Peter Schuster, and Monika
Seisenberger, editors, Logic, Construction, Computation, volume 3 of Ontos mathematical
logic, pages 259 – 287. Ontos Verlag, 2012. (cited on pp. 12, 31, 35, 89, 148).

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, 2007. (cited on p. 28).

Erik Palmgren. On universes in type theory. In Giovanni Sambin and Jan Smith, editors,
Twenty five years of constructive type theory, pages 191 – 204. Oxford University Press,
1998. (cited on p. 38).

Erik Palmgren. Constructivist and structuralist foundations: Bishop’s and Lawvere’s
theories of sets. Annals of Pure and Applied Logic, 163(10):1384 – 1399, 2012. (cited on
p. 30).

Alan Perlis and Klaus Samelson. Preliminary report: International Algebraic Language.
Communications of the ACM, 1(12):8 – 22, 1958. (cited on p. 2).

Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the calculus
of constructions. In Mathematical Foundations of Programming Semantics 1989, pages
209–228. Springer-Verlag, 1990. (cited on p. 5).

D. Prawitz. Proofs and the meaning and completeness of the logical constants. In
Jaakko Hintikka, Ilkka Niiniluoto, and Esa Saarinen, editors, Essays on Mathematical
and Philosophical Logic, pages 25–40. Reidel, 1979. (cited on p. 4).

Dag Prawitz. Natural Deduction: a Proof-Theoretical Study. Almquist & Wiksell, 1965.
(cited on p. 13).

Frank Rosemeier. On Conway numbers and generalized real numbers. In Ulrich Berger,
Horst Oswald, and Peter Schuster, editors, Reuniting the Antipodes, pages 211 – 227.
Kluwer Academic Publishers, 2001. (cited on pp. 148, 153, 160).

Bertrand Russel. The Principles of Mathematics. Cambridge University Press, 1903. (cited
on p. 2).

Anne Salvesen and Jan Smith. The strength of the subset type in Martin-Löf’s type
theory. In Logic in Computer Science, 1988. (cited on p. 28).

210

Bibliography

Dana Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume 125 of
Lecture Notes in Mathematics, pages 237–275. Springer, 1970. (cited on p. 22).

Anton Setzer. An upper bound for the proof theoretical strength of Martin-Löf type
theory with W-type and one universe. Draft, 1996. (cited on p. 110).

Anton Setzer. Well-ordering proofs for Martin-Löf’s type theory with W-type and one
universe. Annals of Pure and Applied Logic, 92:113 – 159, 1998. (cited on p. 38).

Anton Setzer. Universes in type theory part I – Inaccessibles and Mahlo. In Alessandro
Andretta, Keith Kearnes, and Domenico Zambella, editors, Logic Colloquium ’04,
number 29 in Lecture Notes in Logic, pages 123 – 156. Cambridge University Press,
2008. (cited on pp. 38, 173).

Paul Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.
(cited on p. 66).

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, 2013. (cited on pp. 25, 27, 148,
160).

Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Number 344 in Lecture Notes in Mathematics. Springer, 1973. (cited on
p. 28).

Anne Sjerp Troelstra. Definability of finite sum types in Martin-Löf’s type theories.
Indagationes Mathematicae, 86(4):475 – 481, 1983. (cited on p. 21).

Anne Sjerp Troelstra. On the syntax of Martin-Löf’s type theories. Theoretical Computer
Science, 51:1 – 26, 1987. (cited on p. 14).

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics: an introduction,
volume 121 of Studies in logic and the foundations of mathematics. Elsevier Science, 1988.
(cited on p. 22).

Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, L’Universite
Paris 7, 1994. (cited on p. 21).

Olov Wilander. Constructing a small category of setoids. Mathematical Structures in
Computer Science, 22:103 – 121, 2012. (cited on p. 30).

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis,
Carnegie Mellon University, 2009. (cited on p. 20).

211

http://homotopytypetheory.org/book

Index

◻F , 70
Π-type (function type), 17
Σ-type (pair type), 19

in CwF, 74
x ≡A y, 24
+SP, 48

0 (empty type), 18
1 (unit type), 18
2 (Booleans), 18

Agda, 28
A-ind, 41, 46
AlgF , 59
ArgA, 41, 43
ArgIIR,A, 122, 123
ArgB, 46
ArgIIR,B, 127
ArgIR, 36
argument

generalised, 35
inductive, 6, 35

code in SPA for, 41
code in SPB for, 46

non-inductive, 6, 35
code in SPA for, 41
code in SPB for, 45

ordinary, 35
A-Term, 44
A-TermIIR, 124
Aux, 133

axiomatisation
inductive-inductive definitions, 39
inductive-inductive-recursive defi-

nitions, 121
inductive-recursive definitions, 36
positive inductive-recursive defini-

tions, 164

base case
code in SPA for, 40
code in SPB for, 45

BHK interpretation, 22
B-ind, 41, 46

cardinal
inaccessible, 93
Mahlo, 131
regular, 93

Categories with Families
CwF morphism, 70

Category with Families, 66
computation rule, generic, 79
cong2, 26
constant families in CwF, 74
container, 97

inductive-inductive, 102
inductive-inductive, graded, 106
normal form for inductive defini-

tions, 100
context comprehension in CwF, 66
context, valid, 14

213

Index

as inductive-inductive definition, 31
reduced to indexed inductive defi-

nition, 110
cumulative hierarchy, see Vα
CwF, see Category with Families

democracy in CwF, 74
dialgebra, 61
Dialg(F,G), 61

EArg, 63
elimination principle, generic, 72

equivalence with initiality, 84
elimination rules, simple, 56
equality reflection, 24
ext, 25
extensional Type Theory, 25

F -algebra, 59
category of, 59
free on Y , 91

FamC, 39
FamF (C), 137
F , 78
Fin(n) (finite types), 6

as inductive-inductive definition, 50
function extensionality, 25
FunIIR, 122
FunIIR−coh, 124
FunIR, 37

goodA and goodB (goodness proofs), 113

identity type, 24
in CwF, 73

IndexB, 47
induction hypothesis type, see ◻F
inductive definition

in set theory, 8
indexed, 6
ordinary, 6

inductive family, see inductive definition,
indexed

inductive-inductive definition

embedding into inductive-inductive-
recursive definitions, 130

of generalised family, 138
reducing to indexed inductive defi-

nitions, 110
telescopic, 140

inductive-recursive definition, 6
embedding into inductive-inductive-

recursive definitions, 129
positive, 163

initial algebra, 60
initiality, defining functions using, 64
inverse image type in CwF, 75
IR+, 163

model,set theoretical
inductive-inductive definitions, 93
inductive-inductive-recursive defi-

nitions, 136
inductive-recursive definitions, 131
positive inductive-recursive defini-

tions, 168
monotone operator, 9
multiple constructors, encoding into one,

48

nil, 40, 45
non-ind, 41, 45
normal function, 132

pattern functor, 60
preA and preB (pre-sets), 112
projections in CwF, 66
propositional equality, see identity type
propositional type, 27

recursive-recursive, 51
referable element, 41
repA, 44
repA,IIR, 125

SPA, 40
SPIIR,A, 121
SPB, 45
SPIIR,B, 126

214

Index

splitting morphism, 168
subequaliser, see dialgebra
surreal number, 149

as inductive-inductive definition, 153

Vα (cumulative hierarchy), 93

W-type (well-ordering type), 6
as inductive-inductive definition, 49

215

	Abstract
	Table of Contents
	Acknowledgements
	Introduction
	The importance of dependent types
	Data types for computer science
	Data types for the working mathematician

	Inductive definitions in Type Theory and set theory
	Inductive definitions in Type Theory
	Inductive definitions in set theory

	Overview

	Martin-Löf Type Theory
	An intuitionistic theory of types
	General equality and substitution rules
	Set and function types
	Sets as type constants
	Derived rules and meta-theoretical properties
	The Curry-Howard isomorphism: propositions-as-types
	Equality and identity types
	Propositional types

	The dependently typed programming language and proof assistant Agda
	Category theory in Type Theory

	A finite axiomatisation of inductive-inductive definitions
	Examples of inductive-inductive definitions
	A finite axiomatisation
	Dissecting an inductive-inductive definition
	Dybjer and Setzer's axiomatisation of inductive-recursive definitions
	The axiomatisation of inductive-inductive definitions
	The examples revisited
	Elimination rules

	Summary and discussion

	A categorical characterisation
	Inductive-inductive definitions as dialgebras
	Dialgebras
	A category for inductive-inductive definitions

	A framework for generic elimination rules
	Categories with Families
	A generic induction hypothesis type
	Generic computation rules
	The generic eliminator for an inductive-inductive definition

	The equivalence between having an eliminator and being initial
	Initiality implies the elimination rules
	The elimination rules imply initiality

	Summary and discussion

	Semantics
	A set-theoretic model
	Dialgebras versus F-algebras
	A concrete model

	Container semantics: an extensional normal form
	Commuting codes
	Inductive-inductive containers
	Graded inductive-inductive containers

	Reduction to extensional indexed inductive definitions
	Summary and discussion

	Extensions
	Inductive-inductive-recursive definitions
	The axiomatisation of inductive-inductive-recursive definitions
	Embedding inductive-recursive and inductive-inductive definitions
	Extending the model

	Telescopic inductive definitions and generalised families
	Generalised families
	Towers of inductive-inductive definitions

	Summary

	Case studies
	Conway's surreal numbers
	Introduction
	Surreal numbers, informally
	Set theory in Type Theory
	Surreal numbers as an inductive-inductive definition
	Properties and operations
	Discussion

	Positive inductive-recursive definitions
	The semantics of IR, revisited
	Syntax and semantics of positive inductive-recursive definitions
	Comparison to plain IR
	Existence of initial algebras
	Conclusion

	Conclusions
	Summary and discussion
	Further work

	Agda formalisations
	Examples
	Contexts and types and terms
	Sorted lists
	Dense completion of an ordered set

	Axiomatisations
	Prelude
	Inductive-inductive definitions
	Inductive-recursive definitions
	Inductive-inductive-recursive definitions

	Bibliography
	Index

